АНАЛИЗ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК

Средства учета количества электричества и электрической энергии
Состояние вопроса дозирования количества электричества и электрической энергии в современном производстве Потребность производства в устройствах дозирования электрической энергии О средствах учета электрической энергии, используемых в электротехнологиях ВОПРОС КВАНТОВАНИЯ ТЕКУЩЕГО ЗНАЧЕНИЯ КОЛИЧЕСТВА ЭЛЕКТРИЧЕСТВА И ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ Цифровое дозирование количества электричества и электрической энергии ПРОЕКТИРОВАНИЕ УСТРОЙСТВ ДОЗИРОВАНИЯ Разработка схемы устройства цифрового дозирования электрической энергии АНАЛИЗ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК Определение погрешности устройства дозирования количества электричества Зависимость погрешности дозирования от состава технических средств комплексов дозирования Расчет стоимости материалов, необходимых для изготовления устройства дозирования электрической энергии Расчет основной заработной платы служащих на этапе проектирования Расчет основной заработной платы рабочих на этапе изготовления опытного образца Расчет дополнительной зарплаты и отчислений на социальное страхование рабочих и служащих ОХРАНА ТРУДА Освещение Вибрация Электробезопасность Электромагнитное излучение Противопожарная безопасность
145927
знаков
16
таблиц
16
изображений

4. АНАЛИЗ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК

4.1 Оценка погрешности квантователя по вольт-секундной площади и способы ее снижения

Квантователь является важнейшим звеном измерительной системы, входящей в состав дозирующего устройства. Погрешности квантователя самым непосредственным образом влияют на точность измерений и, соответственно будут влиять на точность дозирования.

Точность дозирования в первую очередь зависит от стабильности размера кванта количества электричества – q0. Этот параметр является основной метрологической характеристикой дозирующего устройства. Его величина численно равна максимальному заряду на емкости интегратора в течение одного такта интегрирования. Она зависит от электрических параметров схемы интегрирующего усилителя и должна оставаться стабильной на протяжении всего периода его работы.

Величина кванта q0 пропорциональна размеру вольт-секундной площади S0, которая численно равна интегралу от мгновенных значений напряжения, подаваемого на вход квантователя в течение одного такта интегрирования ТЦ:

 (4.1)

Основным критерием точности является стабильность размера кванта q0, что адекватно отражается на стабильности вольт-секундной площади S0.

Реальные цифровые измерительные устройства, наряду с наличием методических погрешностей преобразований, всегда обладают инструментальными погрешностями, которые определяются суммарным влиянием погрешностей отдельных узлов устройства, вызываемых различными факторами, непосредственно влияющими на стабильность размера кванта, а, следовательно, и на стабильность вольт-секундной площади S0.

Методики расчета погрешностей, предлагаемые отдельными авторами [19, 36, 38, 39], позволяют с определенной достоверностью учитывать погрешности измерительных преобразователей, вызванные неидеальностью основных параметров ОУ. Превалирующим по степени влияния на точность является интегратор. При расчетах, наряду с интегратором, аналогичным образом можно учесть погрешности всех ОУ, входящих в структуру преобразователей.

Погрешности квантователя в первую очередь определяются неточностью выполнения операции интегрирования и нестабильностью порогов срабатывания компаратора в течение одного цикла работы, и вызваны они, в основном, изменением коэффициентов усиления операционных усилителей, дрейфами напряжения смещения и тока смещения [28].

Эти изменения характеризуются неидеальностью основных параметров операционных усилителей, а именно: входным сопротивлением, не равным бесконечности; выходным сопротивлением, не равным нулю; коэффициентом усиления не равным бесконечности; инерционностью усилителя; дрейфом нуля усилителей [28].

Для проведения анализа погрешностей рассмотрим схему квантователя, которая представлена на рисунке 2.6.

Поскольку схема работы квантователя является двухтактной, то в зависимости от положения устройства коммутации в разные моменты времени структура квантователя неодинакова. В связи с этим для определения его погрешности будем вести расчет для каждого из двух возможных положений аналогового ключа. В первом случае проведем анализ погрешности цепи “инвертор – аналоговый ключ – интегратор - компаратор”, а во втором – цепи “повторитель напряжения – аналоговый ключ – интегратор - компаратор ”. По окончании расчета примем за погрешность квантователя максимальное из полученных значений.

Рассчитаем погрешность инвертирующего усилителя. Как известно, погрешности усилителей определяются неточностью используемых резисторов и неидеальностью операционных усилителей.

В качестве операционного усилителя выбираем микросхему К544УД2, параметры которой приведены в таблице 4.1.

Таблица 4.1- Параметры микросхемы К544УД2

Тип микросхемы К544УД2
K, тыс. 20

±Uп, В

5-17

Iп, мА

7

±eсм, мВ

50

TKeсм, мкВ/К

50

Iвх, нА

0.5

∆iвх, нА

0.1

±Uдр, В

10

±Uсф, В

10

M`сф, дБ

70

f1, МГц

15
v, В/мкс 20

±Uвых, В

10

Rн, кОм

2

Сначала вычислим мультипликативные погрешности. Погрешность некомпенсации

δнк=100/(1+К0β)=100/(1+20000*1)=0,00499% (4.2)

Синфазная помеха

δсс=10-mсс/20*100%=10-70/20*100%=0,0316% (4.3)

Рассчитаем мультипликативную погрешность, возникающую из-за неточности применяемых резисторов. В качестве резисторов R1 и R2 выбираем С2-29В 10 кОм с допуском по сопротивлению 0,05% и ТКС=±5*10-6 1/ºC. Тогда

δRR1R2+(ТКСR1+ТКСR2)ΔT*100%=0,05+0,05+(5*10-6+5*10-6)5*100%=0,105% (4.4)

Для компенсации погрешности, обусловленной протеканием тока IBX в цепь неинвертирующего входа ОУ КР544УД2 при заданных параметрах цепи – R1=R2=10 кОм и параметрах ОУ необходимо установить резистор коррекции

R3=R1R2/(R1+R2)=10×10 / (10+10)=5 кОм.

 

Выбираем R3 = 5,1 кОм типа С2-29В.

Находим суммарную мультипликативную погрешность

δмультнкссR=0,00499+0,0316+0,105=0,14159% (4.5)

Далее определим аддитивные погрешности инвертора. Погрешность, вызванная дрейфом нуля усилителей dТКе0

 

dТКе0=ТКе0*ΔТ*100/Uвх.макс=50*10-6*5*100/10=0,025% (4.6)

Аддитивная погрешность, вызванная неидеальностью источника питания

 

dКВНПе0=КВНПе0*ΔЕпит*100/Uвх=300*10-6*0,5*100/10=0,0015% (2.25)

Суммарная аддитивная погрешность

 

dадд=dТКе0+dКВНПе0=0,0025+0,0015=0,004% (4.7)

Результирующая погрешность инвертора

 

dΣ=dмульт+dадд=0,14159+0,004=0,14559% (4.8)

Определим погрешность аналогового ключа. Погрешность от неидентичности ключей вызывается нестабильностью сопротивлений rk1 и rk2 . С учетом того, что R >> rk имеем

 (4.9)

где Drk1 и Drk2 – изменение сопротивлений замкнутых ключей под воздействием внешних факторов или старения. Действия некоторых факторов можно уменьшить схемными решениями. Нелинейность сопротивления ключа при открытом состоянии и зависимость его от температуры можно ослабить подключением последовательно с ключом резистора, сопротивление которого значительно больше сопротивления ключа. Сопротивление полевых транзисторов в открытом состоянии обычно колеблется от 50 до 200 Ом. Включение резистора сопротивлением 2¸5 кОм последовательно с транзистором практически исключает погрешность, вызванную нелинейностью и зависимостью сопротивления ключа от температуры [36]. Ключи на полевых транзисторах, выполненные в виде одной интегральной схемы имеют, как правило (Drk1 – Drk2), не более нескольких единиц Ом, поэтому для уменьшения погрешностей рекомендуется величину R выбирать в диапазоне 104 ¸ 105 Ом.

При использовании аналоговых ключей типа КР590КН4(rkоткр » 75 Ом), сопротивления R4 =10 кОм, а также (Drk1–Drk2) »10 Ом погрешность, вызванная изменением сопротивлений замкнутых ключей

 

dКЛ = (Drk1 – Drk2)×100 / R4 = 10×100 / 10000= 0,1% (4.10)

Рассчитаем погрешность интегратора. В качестве операционного усилителя для интегратора выбираем микросхему типа ОУ574УД3, параметры которой приведены в таблице 4.2.

Таблица 4.2- Параметры микросхемы К574УД3

Тип микросхемы К574УД3
K, тыс. 20

±Uп, В

3-16.5

Iп, мА

7

±eсм, мВ

5

TKeсм, мкВ/К

-

Iвх, нА

0.5

∆iвх, нА

0.2

±Uдр, В

-

±Uсф, В

-

M`сф, дБ

-

f1, МГц

5
v, В/мкс 30

±Uвых, В

10

Rн, кОм

-

Проводим расчет мультипликативных погрешностей. Находим относительные погрешности от нелинейности интегрирования в соответствии с формулами

 

dЛ1=100*t/K0τ=100*10*10-3/20000*10*103*10-6=0,005% (4.11),

где τ=R4C1– постоянная времени интегратора. Выбрав величину R4, согласно рекомендации приведенной выше, определим емкость интегратора

 

C = tИНТ /R. (4.12)

Если на вход интегратора подать ступенчатый сигнал, амплитуда которого на протяжении некоторого времени будет постоянна, то в процессе интегрирования можно точно определить изменение выходного напряжения во времени, которое представляет собой наклонную прямую с полярностью, противоположной полярности входного сигнала.

 

UВЫХ = -(1/R4C1)òUВХdt = -(1/R4C1)(UВХ×t) (4.13)

Исследуемое устройство является интегрирующим с переменным временем интегрирования. В таких приборах, как известно, для улучшения помехоподавления и устранения погрешностей от наводок с частотой питания 50 Гц время цикла измерения, т.е. время интегрирования, выбирается равным или кратным 20 мс tИ » ТС = 0,02 с.

Размах напряжения на выходе интегратора желательно выбрать в рекомендованном диапазоне ±1,2 В, т.е. Um = 2,4 В. Величина входного напряжения Uвх= 1,2 В, величина сопротивления R4 =10 кОм. Проинтегрируем в пределах от t0 = 0 до t1 = ТС = 20 мс.

Из выражения (4.13) находим величину постоянной времени интегрирования

 

R4C1=(UВХ×tИ)/ UВЫХ = (1,2×0,02)/2,4 = 10×10-3с, (4.14)

а далее величину емкости

 

C1 = R4C1 / R4 =10×10-3/10×103=1×10-6Ф =1,0 мкФ (4.15)

dЛ2=100fср.инт/f1=100*16/5*10-6=0,00032%, (4.16)

где fср.инт = 1/(2pRC)=1/2p *10*103*10-6=16 Гц – частота среза RC-цепи.

dЛΣ=dЛ1+dЛ2=0,005+0,00032=0,00532% (4.17)

Погрешность, возникающая вследствие неточности применяемых резисторов и конденсаторов. В качестве конденсатора С1 выбираем К31-10 с допуском по емкости 0,01% ТКЕС=10-6 1/ºС.

 

dRC=dR4+TKCR4*ΔT*100+dC1+TKEC1*ΔT*100=

=0,05+5*10-6*5*100+0,01+10-6*5*100=0,063% (4.18)

Сумарная мультипликативная погрешность

 

dмульт=dЛΣ+dRC=0,00532+0,063=0,06832% (4.19)

Рассчитаем аддитивные погрешности интегратора. Погрешность, вызванная дрейфом нуля усилителя dТКе0

 

dТКе0=ТКе0*ΔТ*100/Uвх.макс=50*10-6*5*100/10=0,025% (4.20)

Аддитивная погрешность, вызванная неидеальностью источника питания

 

dКВНПе0=КВНПе0*ΔЕпит*100/Uвх=10-5*0,5*100/10=0,00005% (4.21)

Суммарная аддитивная погрешность

 

dадд=dТКе0+dКВНПе0=0,0025+0,00005=0,00255% (4.22)

Результирующая погрешность интегратора складывается из суммы мультипликативных и аддитивных погрешностей

 

dΣ=dмульт+dадд=0,06832+0,00255=0,07087% (4.23)

Следует выделить следующие основные возможности повышения точности работы интегратора [41]:

использование ОУ с малыми значениями UCM, IBX и DIBX;

применение внешних цепей компенсации UCM, IBX и DIBX;

ограничение максимального времени интегрирования;

использование внешних цепей принудительного обнуления интегратора;

шунтирование интегрирующего конденсатора сопротивлением.

Как известно [42], смещение нуля операционного усилителя вызывается неидентичностью двух его входов, поэтому в качестве одной из мер по уменьшению ошибки интегрирования для компенсации составляющей погрешности IBX необходимо в цепь неинвертирующего входа ОУ (рисунок 2.6) установить корректирующее сопротивление, величина которого должна быть выбрана из условия

RKOP = R1ROC/(R1 + ROC).

При условии компенсации только составляющей IBX наличие ЭДС смещения нуля и его дрейф приводят к появлению на выходе интегратора сигнала ошибки UОШ, достигающего за время интегрирования tИ значения

 

UОШ = UCM + (UCM/RC)tИ + (DIBX/С)tИ (4.24)

Следует отметить, что с целью повышения точности измерений в большинстве современных аналого-цифровых измерительных приборов, в основном, цифровыми средствами, периодически производятся операции коррекции нуля выходного напряжения интегрирующих усилителей при закороченных входах. [24]. Погрешность от наличия напряжения дрейфа усилителей может быть достаточно большой, поэтому, зачастую, между циклами преобразования вводится такт автоматической коррекции дрейфа, которая выполняется путем запоминания напряжения смещения на дополнительном конденсаторе и последующего вычитания запомненного напряжения из входного напряжения усилителя [34]. Благодаря такому воздействию погрешность от наличия напряжения дрейфа усилителей снижается более чем на порядок.

Найдем погрешность, вносимую компаратором. В качестве операционного усилителя в компараторе выбираем микросхему К140УД17, параметры которой представлены в таблице 4.3.

Таблица 4.3 – Параметры микросхемы К140УД17

Тип микросхемы К140УД17
K, тыс. 150

±Uп, В

3-18

Iп, мА

5

±eсм, мВ

0.25

TKeсм, мкВ/К

1.3

Iвх, нА

10

∆iвх, нА

5

±Uдр, В

15

±Uсф, В

13

M`сф, дБ

100

f1, МГц

0.4
v, В/мкс 0.1

±Uвых, В

12

Rн, кОм

2

Выбираем резистор R7=10 кОм типа С2-29В с допуском по сопротивлению 0,05% и ТКС=5*10-6 1/ºC. Резистор R6 выбираем исходя из рекомендуемого соотношения (R6+R7)/R6=6/1. Тогда намечаем R6=2,2 кОм типа С2-29В с с допуском по сопротивлению 0,05% и ТКС=5*10-6 1/ºC.

Погрешность компаратора определяется формулой

 

dкомп=Uвр/Uпор (4.25)

где Uпор - напряжение срабатывания компаратора

Uпор0+iвхR7R6/(R7+R6)+100TKE0*ΔT+100*TKiвх *ΔT *R7R6/(R7+R6)=

=0,25*10-3+10*10-9*10*103*2,2*103/(10*103+2,2*103)+100*1,3*10-6*5+

+100*50*10-6*5*10*103*2,2*103/(10*103+2,2*103)=0,000451% (4.26)

Тогда погрешность компаратора

 

dкомп=100Uвр/Uпор=100*0,000451/1,2=0,0375% (4.27)

В итоге результирующая погрешность квантователя по вольт-секундной площади по цепи “инвертор – аналоговый ключ – интегратор - компаратор”

 

dквант=dинв+dАК+dинт+dкомп=0,14559+0,1+0,07087+0,0375=0,35387% (4.28)

Поскольку из цепи “повторитель напряжения – аналоговый ключ – интегратор - компаратор ” ранее не была рассчитана лишь погрешность повторителя напряжения, то вычислим ее.

Повторитель напряжения является частным случаем неинвертирующего усилителя, т.е. усилителем с коэффициентом ООС β и коэффициентом усиления Ки, равным единице. Для его построения достаточно выход ОУ непосредственно соединить с И-входом, а на Н-вход подать входной сигнал. Тогда R2=0, R1=∞. Повторитель напряжения применяется в тех случаях, когда необходимо повысить входное сопротивление или снизить выходное сопротивление некоторого электронного узла. В качестве операционного усилителя в повторителе напряжения выберем К544УД2, параметры которого представлены в таблице 4.1. Вычислим мультипликативные погрешности. Погрешность некомпенсации

δнк=100/(1+К0β)=100/(1+20000*1)=0,00499% (4.29)

Синфазная помеха

δсс=10-mсс/20*100%=10-70/20*100%=0,0316% (4.30)

Суммарная мультипликативная погрешность повторителя напряжения

δмульт= δнк+ δсс=0,00499+0,0316=0,03659% (4.31)

Проведем расчет аддитивных погрешностей.

Составляющая от входного тока

δiвх=100iвхRвых=0,5*10-9*3*103*100=0,00015% (4.32)

Погрешность, вызванная дрейфом нуля усилителей dТКе0

 

dТКе0=ТКе0*ΔТ*100/Uвх.макс=50*10-6*5*100/10=0,025% (4.33)

Аддитивная погрешность, вызванная неидеальностью источника питания

 

dКВНПе0=КВНПе0*ΔЕпит*100/Uвх=300*10-6*0,5*100/10=0,0015% (2.53)

Суммарная аддитивная погрешность

 

dадд=diвх+dТКе0+dКВНПе0=0,00015+0,0025+0,0015=0,00415% (4.34)

Результирующая погрешность повторителя напряжения

 

dΣ=dмульт+dадд=0,03659+0,00415=0,04074% (4.35)

В итоге результирующая погрешность квантователя по вольт-секундной площади по цепи “повторитель напряжения – аналоговый ключ – интегратор - компаратор”

 

dквант=dповт+dАК+dинт+dкомп=0,04074+0,1+0,07087+0,0375=0,24911% (4.36)

Поскольку погрешность квантователя по цепи “инвертор – аналоговый ключ – интегратор - компаратор” (dквант=0,35387%) превышает погрешность по цепи “повторитель напряжения – аналоговый ключ – интегратор - компаратор” (dквант=0,24911%), то за погрешность квантователя принимаем именно ее значение.


Информация о работе «Средства учета количества электричества и электрической энергии»
Раздел: Физика
Количество знаков с пробелами: 145927
Количество таблиц: 16
Количество изображений: 16

Похожие работы

Скачать
69501
3
0

... потерь, например при передаче электроэнергии; -  реконструкция устаревшего оборудования; -  повышение уровня использования вторичных ресурсов; -  улучшение структуры производства. Приёмники электрической энергии промышленных предприятий получают питание от системы электроснабжения, которая является составной частью энергетической системы. На ГПП (главной понизительной подстанции) напряжение ...

Скачать
21875
0
0

... на несколько десятков градусов выше водопроводной воды. И эта разность температур могла бы быть использована для получения механической и электрической энергии. Аккумулирование энергии При оценке машин для использования новых источников энергии – солнца, ветра, северного холода и т.п. – приходится исходить не из коэффициента полезного действия, а из стоимости установки и занимаемой полезной ...

Скачать
48288
0
0

... проводов, частей устройств; методы расчета электросетей, их защита от коротких замыканий; другие вопросы, которые решались и решаются учеными, инженерами, практиками, изобретателями. История открытий в электроэнергетике Открытие и применение электричества было одним из величайших достижений человечества. Этому предшествовали усилия многих и многих людей разных профессий в разные эпохи. ...

Скачать
75372
24
5

... кА ίУ(3), кА I″(3), кА ίУ(3), кА Точка К1 1,52 3,45 2,9 6,6 Точка К2 4,12 10,46 7,2 18,3 2.4 Выбор электрических аппаратов и токоведущих частей для заданных цепей 2.4.1 Выбор выключателей для цепей 35 и 10 кВ На подстанции номер 48П «Петрозаводская птицефабрика» установлены масляные выключатели, которые физически и морально устарели, из-за ...

0 комментариев


Наверх