Министерство образования и науки Украины

Одесский Национальный Университет им. И.И. Мечникова

Физический факультет

 Кафедра теплофизики

Термодинамическое равновесие гетерогенных плазменных систем с существенной ионизацией компонентов

«допустить к защите» Курсовая работа

зав. кафедры теплофизики студентки IV курса

профессор_____Калинчак В.В. физического факультета

«__» _________ 2004г. Кобзаренко Л.А.

 Научный руководитель

 доцент Маренков В.И.

 

Одесса 2004 г.


Содержание

 

Введение

1.  Идеально-газовый подход при описании ионизации в плазме

 с конденсированными частицами

1.1. Ионизация в идеальном газе и плазмозоле. Система идентичных частиц в буферном газе. Учет ионизации атомов легкоионизируемой присадки

2.  Дебаевский подход моделирования гетерогенных кулоновских

систем

2.1.  Объемный заряд и потенциал в плазмозоле. Зависимость электронной концентрации от определяющих параметров плазмы

3. Ячеечные модели плазмы, содержащей частицы

3.1. Ионизация системы газ – частицы в модели Гибсона

3.2.  Режим слабого экранирования

Выводы Список литературы

Введение*

Термодинамика рабочих тел МГД-генераторов на твердом топливе, электрические воздействия на процесс горения с целью его интенсификации и управления, высокотемпературная конденсация оксидов в продуктах сгорания металлизированных топлив, проблемы защиты окружающей среды, поведение пылегазованных образований в атмосфере и космосе, плазмохимия – все это далеко не полный перечень областей науки и техники, где требуется знание свойств плазмы с КДФ в различных состояниях.

Плазма с КДФ – ионизированный газ, содержащий малые частицы или кластеры, при чем эти частицы могут влиять на некоторые свойства плазмы.

В области температур Т, характерной для приложений НТП с КДФ, важную роль играют процессы переноса заряда; поглощение электромагнитных волн в гетерогенной плазме непосредственно зависит от ее ионизации. Явление переноса – это кинетические процессы, но как известно из статистической физики [1] и физической кинетики [2], их скорости определяются градиентами соответствующих величин, т.е. в конечном счете их полем.

Существующие модели ГПС основываются на известных подходах (Саха, Дебая, а также, появившихся в последнее время, ячеечных),которые выходят из предположения о малости потенциальных взаимодействий ГПС, сравнительно с кинетической энергией теплового движения частиц. Однако, как показывает эксперимент в плотной и высокотемпературной ГПС ионизации макрочастиц и газовой фазы становится существенней, и в результате потенциальная энергия заряда плазм в самосогласованном поле сравнивается больше kT. В этом случаи применение результатов разработанных ранней моделью становится не корректным и требуется их усовершенствование с целью охватить интересную для приложения область высоких концентраций и температур. В работе рассматривается “аналитическая” продолжение статистической ячеечной модели плазмы на эту область термодинамических параметров. В первом разделе рассмотрены существующие подходы к описанию состояния ГПС. Второй раздел посвящен вопросам модификации и распространению статистической модели квазинейтральных ячеек на область высоких температур и концентраций ГПС.


Идеально-газовый подход при описании ионизации в плазме с

конденсированными частицами.

*

Ионизационное равновесие идеальных газов в термодинамических равновесных системах определено термодинамическими параметрами газа (Т, Р, V) и рассчитывается методам статистической физики. В системах, находящихся в равновесии, средние концентрации газовых частиц с течением времени не изменяются. Это значит, что скорости прямых и обратных химических реакций равны и выполняется закон действующих масс [1]. Рассматривая равновесную термическую ионизацию идеальных газов как баланс различных реакций ионизации и рекомбинации, Саха получил выражение для константы ионизационного равновесия в разреженном газе [3]. В настоящей главе рассмотрены основные физические аспекты такого подхода и его распространение на системы, содержащие частицы конденсированной дисперсной фазы (КДФ).

Ионизация в идеальном газе и плазмозоле.

Согласно определению идеальный газ – это система, состоящая из точечных молекулярных частиц, взаимодействующих только при столкновении, т.е. при их сближении на расстояния, сравнимые с их собственными размерами, которые пренебрежимо малы по сравнению с межчастичными расстояниями.

Если молекулы газа ионизовать, то в газовой фазе появляются заряды – электроны и ионы, которые взаимодействуют между собой кулоновскими силами. Эти силы дальнодействующие [4], и каждый атомарный заряд (электрон, ион) в данном случае подвергается действию всех других зарядов в системе. Однако, если его электростатическое взаимодействие с полем, создаваемым в месте локализации этого заряда всеми другими зарядами системы, мало по сравнению со средней кинетической энергией его поступательного движения (κТ), свойства ионизованного газа приближаются к свойствам идеального, а поправки на неидеальность также оказываются малыми [1, с.264].

Моделирование равновесных электрофизических свойств газа направлено прежде всего на получение зависимостей концентрации заряженных частиц от определяющих параметров системы – температуры Т, исходных концентраций компонентов nj (j нумеруют сорт молекул и атомов, потенциалы ионизации компонентов Iaj).

Действительно, с точки зрения практического использования, электронная и ионная концентрации в газе – наиболее интересные величины, так как ими определяются процессы переноса заряда. Газ содержит электроны, ионы, нейтральные молекулы и атомы. Характерной особенностью такого ионизованного газа является его квазинейтральность, т.е. вследствие электростатических взаимодействий в достаточно малых областях, занятых газом, наблюдается компенсация положительных и отрицательных зарядов (суммарный заряд такой области с точностью до флуктуации равен нулю).

Квазинейтральность – основное свойство плазменных сред и частично ионизованный газ в состоянии равновесия также обладает этим свойством. Согласно принципу детального равновесия, каждый канал ионизации (процесс, приводящий к появлению свободных электронов в объеме) скомпенсирован противоположным ему процессом рекомбинации так, что средние концентрации атомарных зарядов сохраняются. Таким образом, в газовой плазме непрерывно идут конкурирующие процессы: ионизация – рекомбинация, причем генерация и исчезновение электронов вследствие этих процессов скомпенсированы, а движение молекулярных зарядов происходит так, что в плазме наблюдается квазинейтральность. Обратимая реакция ионизации нейтрального атома:

,  (1.1.1)

где А – нейтральный атом; М – произвольная частица (молекула, электрон, фотон, другой атом и т.д.), А+ - положительный ион, е- - электрон.

Аналогичным образом можно записать все прочие реакции, сопровождающиеся генерацией и исчезновением заряженных частиц в плазме. Для реакции (1.1.1) условие равновесия принимает вид

,  (1.1.2)

где μа, μi, μe-химические потенциалы соответственно атома, иона и электрона, μm входят справа и слева в равенство (1.1.2) и могут быть сокращены.

Пренебрегая взаимодействием между компонентами газовой плазмы, химический потенциал компонента α определим по формуле для идеального газа [1]:

, (1.1.3)

где Sα – статистическая сумма;

; (1.1.4)

- число частиц сорта α в объеме плазмы V.

В (1.1.4) суммирование распространено на все состояния n частиц сорта α; qαn – статистический вес, а множитель exp(-Eαn/kT) определяет относительную вероятность состояния частицы с энергией Eαn (величина Eαn должна отсчитываться от общего уровня энергии группы частиц, участвующих в рассматриваемой реакции).`

Подставляя (1.1.3) в ( 1.1.2), получаем условие равновесия

или

 . (1.1.5)

Уточним (1.1.4) для статистических сумм S (для простоты индекс α опускаем). Входящая в (1.1.4) полная энергия Е частиц слагается из энергии внутренних степеней свободы j и энергии поступательного движения К. следовательно, (1.1.4) можно записать следующим образом:

, (1.1.6)

где означает суммирование по внутренним состояниям, а - по скоростям.

Выделив энергию основного состояния частицы ε0, представим первую из сумм (1.1.6) в виде

, (1.1.7)

где Q – “внутренняя” статистическая сумма.

Поскольку энергия ε0 отсчитывается от общего уровня системы, то, очевидно, разность энергии системы электрон – ион до и после ионизации равна энергии ионизации атома, т.е.

.  (1.1.8)

Именно эта разность энергий (потенциал ионизации атома) входит в выражение для отношения статистических сумм (1.1.5).

Внутренние статистические суммы атомов и ионов можно определить следующим образом [5, с.102]:

, (1.1.9)

где квантовые числа l и s определяют орбитальный момент количества движения и спин. При kT<Δε1 (что обычно выполнено для низкотемпературной плазмы(НТП)) члены суммы (1.1.9) очень быстро уменьшаются. При расчетах для атомов в этой сумме можно ограничится двумя членами, для ионов – одним. Электроны внутренней структуры не имеют, поэтому их внутренний статистический вес Q=2, он соответствует двум направлениям спина.

Статистическую сумму, связанную с поступательными степенями свободы, определим, основываясь на квазиклассическом приближении квантовой механики [6, с.198]. Размер шестимерной ячейки, соответствующей одному состоянию, находим из соотношения неопределенности

. (1.1.10)

Найдем число состояний, приходившихся на весь фазовый объем системы, отвечающий интервалу скоростей ,во всем объеме плазмы V:

. (1.1.11)

Подставляя (1.1.11) в выражение для статистической суммы , получаем

 (1.1.12)

Заменяя суммирование по скоростям интегрированием, находим

 (1.1.13)

Используя полученное выражение для частиц всех сортов, участвующих в реакции (1.1.1), и учитывая (1.1.8), преобразуем (1.1.5) к виду

 (1.1.14)

Эта формула, определяющая константу ионизационного равновесия, называется формулой Саха. По аналогии с предыдущим можно получить цепочку уравнений Саха для последовательности степеней ионизации атома, т.е. для реакций

 ,

где К – кратность ионизации. При этом в формулах Саха

(1.1.14)

будут фигурировать потенциалы ионизации Ik, которые равны энергии ионизации иона с зарядом Кe. Поскольку значения Ikдля К>1 быстро возрастают , в области температур 1000…3000 К, характерной для низкотемпературной плазмы, будет в основном наблюдаться однократная ионизация атомов. Закон сохранения числа частиц и заряда α определенного сорта совместно с цепочкой уравнений Саха (1.1.14') представляет замкнутую систему уравнений, описывающую ионизационное равновесие в газовой плазме.

В качестве примера рассмотрим ионизацию атомов калия в аргоне. При неизменной температуре Т плазмы повышение исходного содержания атомов калия nA приведет к увеличению равновесной плотности электронов в плазме. Поскольку , в пренебрежении более высокими степенями ионизации атомов калия запишем систему ионизационных уравнений:

(1.1.15)(1.1.15’)(1.1.15’’)

где (1.1.15) – уравнение Саха для однократной ионизации; (1.1.15’) – закон сохранения числа частиц (исходное содержание присадки калия в результате реакций ионизации не меняется); (1.1.15’’) – закон сохранение заряда (концентрация электронов в системе определяется числом ионизованных атомов калия).

Вводя обозначение

(1.1.16)

и используя (1.1.15’) и (1.1.15’’), преобразуем (1.1.15) к виду

 . (1.1.17)

Последнее уравнение имеет очевидное решение

, (1.1.18)

которое и определяет однократную ионизацию атомов калия в плазме по Саха.

На рис.1. показаны расчетные зависимости концентрации электронов в НТП, образованной атомами аргона и калия для температур плазмы Т= 1000, 2000, 3000 К, от исходного содержания атомарного калия nA.

Источниками электронов в высокотемпературном электронейтральном газе могут быть и частицы КДФ с малой работой выхода электронов W. В этом случае появляется специфическая плазменная среда – плазмозоль [7], т.е. система нейтральный молекулярный газ с высоким потенциалом ионизации + свободные электроны, эмиттированные частицами КДФ + заряженные макрочастицы, обменивающиеся электронами с газовой фазой. Отличительные черты такой системы: возможность приобретения частицами КДФ больших (макроскопических)

Рис.1. Ионизация атомов калия в аргоне (концентрационная зависимость)

 

зарядов, наличие у макрочастиц собственного объема, сравнимого с размерами микронеоднородностей в системе, фактически всегда наблюдаемая полидисперсность КДФ.

В связи с широким применением гетерогенных плазменных сред в ряде современных областей энергетики(МГД–генераторы на твердом топливе, управление процессом горения [8]) и технологии (высокотемпературные гетерогенные процессы [9], плазменное напыление [10] и др.), описание термоионизации в НТП с КДФ вызывают в настоящее время значительный интерес [11]. Возможность воздействия на ионизацию среды посредством частиц КДФ была доказана в экспериментах по измерению концентрации электронов в плазме углеводородных пламен [12,13].

Система идентичных частиц в буферном газе.

Наиболее простая модель плазмозоля [14] предполагает, что имеется “ансамбль” идентичных сферических частиц КДФ, обменивающихся электронами с химически нейтральным буферным (несущим) газом. Система неограниченна, и температура всех подсистем: газа, КДФ, электронов – постоянна и равна Т. Равновесная реакция ионизации макрочастицы с зарядовым числом

 

 (1.2.1)

как и ранее, описывается методами расчета равновесных химических систем. Поскольку конденсированные частицы (КЧ) в такой модели представляют собой фактически гигантские молекулы, то в константы равновесия реакций (1.2.1) (соответствующие константы Саха) должна войти разность энергии до и после ионизации КЧ. Эта размерность и является потенциалом ионизации m – кратно заряженной частицы КДФ, который в моделях выбирается равным

, (1.2.2)

где W – работа выхода с поверхности вещества частиц; e – заряд электрона; rp – радиус сферической частицы.

Выбор потенциала ионизации частицы КДФ в виде (1.2.2) фактически означает предположение, что электрон, покидающий КЧ, затрачивает энергию, равную работе выхода с поверхности вещества незаряженной частицы, плюс работа, связанная с кулоновским взаимодействием между эмиттирующей КЧ и излучаемым электроном. Она равна кулоновской энергии электрона на поверхности КЧ только для уединенных макрочастиц или для достаточно разреженных систем. Действительно, в этом случае можно пренебречь эффектами объемного заряда и их влиянием на работу по удалению электрона.

На основе идеально-газовых представлений, как и ранее [(1.1.14), (1.1.14’), (1.1.15), (1.1.15’), (1.1.15’’)], получим соотношение для концентраций КЧ:

 (1.2.3)

где Qm, Qm-1 – статистический вес соответственно m- и (m-1) – кратно ионизованной частицы КДФ; me – масса электрона; h и k – постоянные Планка и Больцмана.

Обозначив n0 концентрацию нейтральных КЧ в системе, построим цепочку уравнений Саха (1.2.3), считая что для макрочастиц Qm/Qm-1=1. Частицы плазмозоля с положительными зарядами дают последовательность уравнений, которыми определяются все более высокие степени ионизации отдельной КЧ. Таким образом, получаем набор уравнений для процессов термоэмиссии электрона с поверхности идентичных сферических частиц с зарядами qm-1=(m-1)e, где m = 1, 2, 3, …, :

(1.2.4)

В уравнениях (1.2.4) К обозначена константа Саха для процесса термоэмиссии электрона с поверхности незаряженной частицы плазмозоля, т.е. для реакции  . Выражая из m – го уравнения  с помощью , которое в свою очередь, можно выразить  из (m-1) – го уравнения, и так далее, продолжая этот процесс вплоть до первого уравнения системы (1.2.4), получаем

 . (1.2.5)

После некоторых преобразований произведение в последней формуле запишем так:

. (1.2.6)

В данном случае введены обозначения

(1.2.7)

Аналогично для отрицательных степеней ионизации дисперсных частиц получим:

* (1.2.8)

По последнему уравнению (1.2.8) найдем . Выразим далее из предыдущего уравнения этой системы и подставим его в выражение для . Продолжив, как и ранее, этот процесс вплоть до первого уравнения (1.2.8), окончательно получим

. (1.2.9)

Уравнения (1.2.5) и (1.2.9) связывают концентрацию нейтральных частиц КДФ в плазмозоле с концентрациями m –кратно ионизованных положительных(1.2.9) макрочастиц. Совместно с законом сохранения заряда

 (1.2.10)

и условием сохранения полного числа КЧ в плазмозоле

 (1.2.11)

 (np – концентрация частиц КДФ) они позволяют определить замкнутую систему уравнений термоионизационного равновесия в плазмозоле идентичных частиц. Из (1.2.10) и (1.2.11) можно найти среднюю ионизацию частиц КДФ, т.е. их среднее зарядовое число:

 (1.2.12)

и относительную концентрацию электронейтральных макрочастиц в системе

.  (1.2.13)

Как показал Саясов, соотношения, аналогичные (1.2.12) и (1.2.13), могут быть преобразованы с помощью эллиптических θ – функций к удобному для математического анализа виду:

 (1.2.14)

(1.2.15)

 

Здесь

(1.2.16)

m=1,2,… .

На основе таблиц θ –функций построены зависимости lg(ne/K) от lg(np/K) при

Рис.2.Область применимости приближения Эйнбиндера в координатах lg(rp), lg(T)

 

различных значениях параметра σ2, охватывающие достаточно широкий диапазон изменения размеров КЧ rp и температур Т монодисперсного плазмозоля.

После некоторых преобразований приходим к формуле Эйнбиндера, которая достаточно точна для высоких степеней ионизации частиц.

На рис.2 в координатах (lg rp, lg T), изображена область применения формулы

(1.2.17)

к описанию ионизационного равновесия в плазмозоле идентичных частиц. Множество точек плоскости (rp, T), соответствующее заштрихованной области I, выделяет состояния плазмозоля, для которых с относительной погрешностью  применима приближенная формула Эйнбиндера (1.2.17).

Эта формула является следствием идеально-газового приближения, т.е. получена без учета влияния микрополей на ионизацию частиц, а следовательно, корректна для систем газ – макрочастицы, в которых влиянием этих полей на ионизационные процессы можно пренебречь. Точность (1.2.17) повышается с усилением ионизации частиц КДФ, однако при этом все более начинают сказываться эффекты объемного заряда, что ограничивает его применимость “сверху” (в области больших зарядов свойства плазмозоля не могут аппроксимироваться идеально-газовым приближением).

Область II на рис.2, ограниченная координатными осями и линией ρ=1 (линия I), соответствует состояниям плазмозоля, которые = 2πσ2  ≤ 1, так что exp(-πρ) ≤ 0.1 и в (1.2.14) для среднего заряда КЧ логарифмическую производную d/dy(lnθ3(y, ρ)) удобнее представить в виде разложения по параметрам y΄ и ρ´ [15, с.96]:

 (1.2.18)

Распределение частиц КДФ по зарядам можно найти, используя (1.33), по которой определяют также относительную концентрацию дисперсных частиц с зарядовым числом m. Оно совпадает с нормальным (гауссовским) распределением [16], в котором σ имеет смысл дисперсии распределения.

В случае малой дисперсии σ2<<1 или ρ≤1, т.е. состояний плазмозоля, соответствующих точкам области II, имеем резкое распределение по зарядам и термоионизационное равновесие лимитируется основной реакцией

. (1.2.19)

Здесь  (E-Entier (целая часть) от y), т.е. большинство частиц в системе имеет кратность ионизации  и , а средний заряд y - центр распределения Гаусса удовлетворяет неравенствам ≤ y ≤. При высокой степени ионизации частиц ne/n=z>>1 приближение Эйнбиндера можно распространить на всю область параметров rp, np и значение yz. Причем связь между ne– средней концентрацией электронов и средним зарядом конденсированной частицы в соответствии с (1.2.19)

(1.2.20)

где .

В случае сильной ионизации частиц , так что (1.2.20) фактически совпадает с формулой, полученной Сагденом и Тращем из решения кинетической задачи о термоэмиссии электронов с идентичных частиц с зарядом ze.

В газовой фазе могут присутствовать легкоионизующиеся атомы (обычно атомы щелочных металлов) в виде естественных добавок (плазма продуктов сгорания) или вводится дополнительно с целью повышения ионизации. Наличие ионизующихся атомов в газовой подсистеме приводит к необходимости учета сложного баланса объемных и поверхностных процессов, определяющий межфазный обмен энергией, массой, импульсом и электрическим зарядом в НТП с КДФ. При этом частицы КДФ, являясь источниками и стоками электронов, могут как повышать в плазме ne, так и способствовать ее понижению.



Информация о работе «Термодинамическое равновесие гетерогенных плазменных систем с существенной ионизацией компонентов»
Раздел: Физика
Количество знаков с пробелами: 42842
Количество таблиц: 2
Количество изображений: 10

Похожие работы

Скачать
64418
0
5

... (гаммексана, или линдана, ценного инсектицида), алкансульфонатов (поверхностно-активных добавок и эмульгаторов), капролактама (одного из предшественников найлона). Новые направления в фотохимии. Лазерная нанотехнология Позиционирование атомов фокусированным лазерным лучом Все компьютерные микропроцессоры изготавливаются на кремниевой подложке методом фотолитографии (см. выше, фоторезисты). ...

0 комментариев


Наверх