2. Дебаевский подход моделирования гетерогенных кулоновских систем.

Модели дебаевского типа заимствуют представления из теории слабых электролитов Дебая – Хюнкеля [19]. Каждая частица КДФ, как и ион [19], поляризует свое окружение, что приводит к появлению избыточного усредненного заряда в окрестности выделенного (рассматриваемой частицы КДФ), т.е. к эффектам электростатического экранирования. Закон распределения избыточного заряда в окрестности КЧ определяется больцмановской статистикой для концентраций заряженных частиц в самосогласованном электростатическом поле в системе координат частицы. Распределение потенциала φ и объемного заряда ρ (избыточного заряда) подчинены уравнению Пуассона. Совместно с законом сохранения заряда для объема, занятого плазмой, а также больцмановскими распределениями зарядов в поле частицы, оно составляет замкнутую систему уравнений для зарядового числа z выделенной КЧ.

2.1. Объемный заряд и потенциал в плазмозоле.

Рассмотрим бесконечную среду, содержащую идентичные сферические частицы КДФ, равномерно распределенные в нейтральном газе с высоким потенциалом ионизации (Iq>>kT), T – температура газа и частиц. В результате электростатических взаимодействий локальные концентрации электронов и дисперсных частиц в окрестности выделенной КЧ отличаются от средних по объему, и избыточный заряд  вблизи КЧ (фактически усредненная по времени плотность электростатического заряда среды  в системе координат КЧ) будет

(2.1.1)

где - радиус вектор точки, z – средний заряд КЧ, e – элементарный заряд.

В (2.1.1) предполагается, что все частицы КДФ имеют один и тот же –заряд z.

Распределение избыточного заряда (2.1.1) и самосогласованного потенциала  связаны уравнением Пуассона

. (2.1.2)

Электронейтральные молекулы буферного газа, поляризуясь в поле КЧ, также вносят свой вклад в экранирование. Поэтому в правую часть (2.1.2) должна входить (в общем случае) диэлектрическая проницаемость . Однако, для рассматриваемых давлений (р~1….10 МПа) 1 и не учитывается.

Поскольку система неограниченна и в ней нет выделенных направлений, оператор Лапласа Δ в (2.1.2) содержит только радиальную часть, а функции точки - локальные концентрации электронов  и частиц  будут зависеть только от расстояния . Интегрируя уравнение (2.1.1) по всему объему плазмы, не содержащему выделенной КЧ, для изотропного случая (сферически симметричное распределение избыточного заряда) получаем

. (2.1.3)

Уравнение (2.1.3) отражает факт электронейтральности плазмозоля. Локальные концентрации  и  связанны с усредненными по объему концентрациями ne и npбольцмановскими соотношениями:

(2.1.4)

Отметим, что (2.1.4) справедливы только в случае слабой ионизации дисперсных частиц, т.е. при . В этом приближении они допускают линеаризацию.

Из уравнения (2.1.1), которое определяет избыточный заряд в окрестности рассматриваемой КЧ и условия, вытекающего из закона сохранения заряда для среды в целом,

znp-ne=0 , (2.1.5)

находим связь между распределением усредненного электростатического потенциала  и избыточного заряда . Окончательно приходим к дифференциальному уравнению 2-го порядка для избыточного заряда  в окрестности заданной КЧ:

. (2.1.6)

Посредством D2 (квадрат дебаевского радиуса для плазмозоля идентичных частиц) обозначена константа

(2.1.7)

Граничные условия для дифференциального уравнения (2.1.6) можно записать из следующих физических соображений:

1) в плазмозоле идентичных эмитирующих частиц усредненная плотность объемного заряда  у поверхности КЧ должна определяться балансом потоков электронов эмиссии и прилипания (потока газовых электронов, поглощенных поверхностью КЧ);

2) на бесконечности (при r)плотность избыточного заряда должна обращаться в нуль. Таким образом, приходим к граничным условиям Дирихле (задаются значения самой функции – плотности избыточного заряда  (r) на поверхности КЧ и вдали от нее):

θ(r)=θ; θ()=0. (2.1.8)

Отбросив растущее на бесконечности частное решение (2.1.6), представим выражение для избыточного заряда θ(r) в виде

(2.1.9)

 Подставляя его в уравнение электронейтральности плазмоля (2.1.3) и производя интегрирование, получаем

. (2.1.10)

Таким образом, имеем трансцендентное уравнение для зарядового числа КЧ в плазмозоле. Поверхностная плотность избыточного заряда  параметрически зависит от электростатического заряда z и определяется как

(2.1.11)

где Q – отношение статистических весов частицы p в зарядовых состояниях z+1 и z; Фz – работа выхода электрона с поверхности заряженной частицы радиуса rp.

Вследствие наличия собственных размеров частицы КДФ не могут приблизиться на расстояния r<2rp и поэтому объемный заряд на поверхности (при r=rp+0) КЧ равен плотности электронной компоненты.

Подставляя (2.1.11) в (2.1.10), получаем уравнение для среднего зарядового числа z КЧ в плазмозоле. Решив это уравнение относительно z и подставив найденное значение корня в условие электронейтральности среды (2.5), получим среднее значение концентрации электронов в газовой фазе:

ne=znp. (2.1.12)

Таким образом, уравнения (2.1.10) – (2.1.12) полностью решают вопрос об ионизационном равновесии в плазмозоле идентичных сферических частиц в рамках дебаевского рассмотрения.


Информация о работе «Термодинамическое равновесие гетерогенных плазменных систем с существенной ионизацией компонентов»
Раздел: Физика
Количество знаков с пробелами: 42842
Количество таблиц: 2
Количество изображений: 10

Похожие работы

Скачать
64418
0
5

... (гаммексана, или линдана, ценного инсектицида), алкансульфонатов (поверхностно-активных добавок и эмульгаторов), капролактама (одного из предшественников найлона). Новые направления в фотохимии. Лазерная нанотехнология Позиционирование атомов фокусированным лазерным лучом Все компьютерные микропроцессоры изготавливаются на кремниевой подложке методом фотолитографии (см. выше, фоторезисты). ...

0 комментариев


Наверх