3. ВЫБОР ДВУХ СТРУКТУРНЫХ СХЕМ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ
Рис. 1 Вариант – I
Рис. 2 Вариант – II
Расход мощности на с. н. одного генератора:
Рс.н.= ×Pном.г;=5% [уч. 1 стр. 445 таб. 5,2]
Рс.н.= ×120=6 МВт – для генераторов ТВФ-120-2УЗ
Рс.н.= ×220=11 МВт – для генераторов ТВВ-220-2ЕУЗ
Расчёт перетока через АТ связи I – варианта
Pпер.max=2×120-2×6-260=-32 МВт
Pпер.min=2×120-2×6-230=-2 МВт
Расчёт перетока через АТ связи I – варианта
Pпер.max=3×120-3×6-260=82 МВт
Pпер.min=3×120-3×6-230=118 МВт
Вывод: I - вариант по перетоку мощности более экономичен.
Провожу расчёт реактивных составляющих
Qс.н.=Рс.н.=cos
С. Н. Qc.н.=Рс.н ×=6×=4,2 МВар
С. Н. Qc.н.=Рс.н ×=11×=7,7 МВар
Qг1=Рг1×=120×=90 МВар
Qг2=Рг2×=220×=132 МВар
Qmax=Pmax×=260×=130 МВар
Qmin=Pmin×=230×=115 МВар
4. ВЫБОР ТРАНСФОРМАТОРОВ
4.1 Выбор блочных трансформаторов I и II варианта мощности провожу по [уч. 1, стр. 390 т. 5,4]
МВА
МВА
МВА
В качестве блочных трансформаторов принимаю [по уч. 2 стр. 146-156 табл. 3,6] на стороне:
- 110 кВ – трансформатор типа ТДЦ-200000/110
- 220 кВ – трансформатор типа ТДЦ-400000/220 – для генератора
ТВВ-220-2ЕУЗ
- 220 кВ – трансформатор типа ТДЦ-200000/220 – для генератора
ТВФ-120-2УЗ
4.2. Выбор автотрансформаторов связи
I – вариант
Sрасч.=
Sрасч.min.= МВА
Sрасч.max.= МВА
Sрасч.ав..= МВА
По наиболее тяжёлому режиму выбирают мощность автотрансформатора связи.
Sтреб.АТ==109 мВА
Где Кn=1,4 т.к. график нагрузки и условия работы автотрансформатора неизвестны.
Выбираю два автотрансформатора: АТДЦТН-125000/220/110
II – вариант
Sрасч.=
Sрасч.min.= МВА
Sрасч.max.= МВА
Sрасч.ав..= МВА
По наиболее тяжёлому режиму выбирают мощность автотрансформатора связи.
Sтреб.АТ==129.4 мВА
Где Кn=1,4 т.к. график нагрузки и условия работы автотрансформатора неизвестны.
Выбираю два автотрансформатора: АТДЦТН-200000/220/110
Данные выбранных трансформаторов свожу в таблицу 2
Таблица 2
Тип трансформатора | Кол- во IВ/IIВ | Uном кВ | Р0 кВт | Рк кВт | Uк % | ||||||
ВН | СН | НН | ВН- -СН | ВН--НН | СН- -НН | ВН- -СН | ВН- -НН | СН- -НН | |||
2×АТДЦТН 200000/220/110 | -/2 | 230 | 121 | 38,5 | 105 | 430 | - | - | 11 | 32 | 20 |
2×АТДЦТН 125000/220/110 | 2/- | 230 | 121 | 10,5 | 65 | 315 | - | - | 11 | 45 | 28 |
ТДЦ 200000/220 | 2/1 | 242 | - | 18 | 130 | - | 660 | - | - | 11 | - |
ТДЦ 200000/110 | 2/3 | 121 | - | 15,75 | 170 | - | 550 | - | - | 10,5 | - |
ТДЦ 400000/220 | 2/2 | 237 | - | 21 | 315 | - | 850 | - | - | 11 | - |
... , напряжений и выбрать подходящую элементную базу для его реализации. Рассчитать потери на полупроводниковых компонентах. – Оценить массо – габаритные показатели и стоимость комплектующих ЭП. синхронный генератор когтеобразный ротор ВВЕДЕНИЕ Современный автомобиль невозможно представить себе без электрооборудования. Все потребители нуждаются в стабильном источнике постоянного тока, ...
... одной демпферной обмоткой аналогичной по оси q. 6. При исследовании электромагнитных переходных процессов не учитывают изменение вращения скорости генератора. Математическая модель синхронного генератора в фазных координатах При составлении этой модели, в целях упрощения, не будем учитывать демпферные обмотки. Следовательно, уравнение баланса напряжений имеет вид: Уравнение статора: ...
... особенностью машины постоянного тока является наличие коллектора и скользящего контакта между обмоткой якоря и внешней электрической цепью. 2.2 Устройство машины постоянного тока Машина постоянного тока (рис. 2.3) по конструктивному исполнению подобна обращенной синхронной машине, у которой обмотка якоря расположена на роторе, а обмотка возбуждения – на статоре. Основное отличие заключается ...
... напряжения между концами вала осуществляют на работающей машине с помощью вольтметра с малым внутренним сопротивлением, при этом прибор присоединяют непосредственно к концам вала. 3.2. Ремонт синхронных двигателей В соответствии с Правилами технической эксплуатации в системе планово предупредительных ремонтов электрооборудования предусмотрено два вида ремонтов: текущий и капитальный. Текущий ...
0 комментариев