16. Электрический ток в металлах. Элементарная классическая теория проводимости металлов
Для выяснения природы носителей тока в металлах был поставлен ряд опытов.
Опыт Рикке (1901 г.)
Cu | Al | Cu |
Три цилиндра с тщательно отполированными торцами складывались в один составной проводник, по которому в течение года в одном направлении пропускался электрический ток. Вес цилиндров не изменился. Следовательно, перенос заряда в металлах осуществлялся не атомами, а другими частицами, входящими в состав металлов. Такими частицами могли быть открытые Томсоном электроны.
Опыты Мандельштама и Папалекси (1913 г.), Стюарта и Толмена (1916 г.)
На катушку намотана проволока, присоединенная к чувствительному гальванометру. Катушку приводили во вращение, а затем резко тормозили. В момент торможения гальванометр показывал кратковременный ток, направление которого свидетельствовало о том, что он создается движением отрицательно заряженных частиц. Стюарт и Толмен определили удельный заряд q/m частиц. Он практически совпал с удельным зарядом электрона. Тем самым было доказано, что электрический ток в металлах представляет собой упорядоченное движение электронов.
В начале ХХ века Друде и Лоренцем была создана классическая электронная теория проводимости металлов. Её основные положения заключаются в следующем.
Металлы имеют кристаллическую решетку, в узлах которой находятся положительные ионы, а между ними движутся свободные электроны (электроны проводимости). Электроны проводимости ведут себя подобно одноатомному идеальному газу. В промежутках между соударениями они движутся совершенно свободно, пробегая в среднем некоторый путь λ. Однако, в отличие от атомов газа, пробег которых определяется соударением атомов друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами кристаллической решетки. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой.
В отсутствии внешнего электрического поля электроны проводимости совершают хаотическое тепловое движение со средней квадратичной скоростью vкв., зависящей от температуры металла (vкв ~ √Т). Когда к металлу приложено внешнее электрическое поле, электроны проводимости начинают двигаться со средней скоростью vср., пропорциональной напряженности электрического поля Е, образуя электрический ток. Эта скорость пренебрежимо мала по сравнению со средней квадратичной скоростью, поэтому во всех расчетах, связанных со столкновениями электронов проводимости с решеткой, скоростью движения электронов считают среднюю квадратичную скорость vкв.
С точки зрения электронной теории сопротивление металлов обусловлено соударениями электронов проводимости с ионами кристаллической решетки. С ростом температуры сопротивление металлических проводников увеличивается, так как, чем выше температура, тем интенсивнее колебания кристаллической решетки и тем чаще электроны сталкиваются с ними. Экспериментально установлено, что зависимость сопротивления чистых металлов от температуры выражается формулой R = Ro (1 + αt). Коэффициент пропорциональности α называют температурным коэффициентом сопротивления (α > 0).
В 1911 г. голландский физик Камерлинг-Оннес обнаружил, что при температурах, близких к абсолютному нулю, сопротивление некоторых химически чистых металлов (например, цинка, алюминия, олова, ртути, свинца), а также ряда сплавов скачком падает до нуля. Это явление получило название сверхпроводимости. Это явление не может быть объяснено на основе классической электронной теории проводимости. Объяснение этому явлению дает только квантовая механика. Классическая электронная теория проводимости оказалась не в состоянии объяснить зависимость сопротивления металлов от температуры (т.к. согласно этой теории R~√Т, на практике R~Т.
17. Основы квантовой теории металлов
В классической электронной теории проводимости металлов электроны проводимости могут обладать любыми значениями энергии. Согласно квантовой теории энергия электронов в любом кристаллическом теле (в частности, в металле) так же, как и энергия электронов в атоме квантуется. Это означает, что она может принимать лишь дискретные (т.е. разделенные конечными промежутками) значения, называемые уровнями энергии. Дозволенные уровни энергии в кристалле группируются в зоны. Чтобы понять происхождение зон, рассмотрим воображаемый процесс объединения атомов в кристалл. Пусть первоначально имеется N изолированных одинаковых атомов какого-либо вещества. Каждый электрон любого атома обладает одним из разрешенных значений энергии, т.е. занимает один из дозволенных энергетических уровней. В основном, невозбужденном состоянии атома суммарная энергия электронов имеет минимальное возможное значение. Казалось бы, что все электроны должны находиться на самом низком уровне. Однако электроны подчиняются принципу запрета Паули, который гласит, что в любой квантовой системе (атоме, молекуле, кристалле и т. д.) на каждом энергетическом уровне может находиться не более двух электронов, причем спины электронов, занимающих одновременно один и тот же уровень, должны иметь противоположные направления. Следовательно, на самом низком уровне атома может разместиться только два электрона, остальные занимают попарно более высокие уровни.
Пока атомы изолированы друг от друга, они имеют полностью совпадающие схемы энергетических уровней. Заполнение уровней электронами осуществляется в каждом атоме независимо от заполнения аналогичных уровней в других атомах.
По мере сближения атомов между ними возникает всё усиливающееся взаимодействие, которое приводит к изменению положения уровней. Вместо одного одинакового для всех N атомов уровня возникает N очень близких, но не совпадающих уровней. Таким образом, каждый уровень изолированного атома расщепляется в кристалле на N густо расположенных уровней, образующих полосу или зону.
Электроны внешней оболочки атома заполняют ряд энергетических уровней, составляющих валентную зону. Валентные электроны участвуют в электрических и химических процессах. Более низкие энергетические уровни входят в состав других зон, заполненных электронами, но эти зоны не играют роли в явлении электропроводности.
В металлах и полупроводниках существует большое число электронов, находящихся на более высоких энергетических уровнях. Эти уровни составляют зону проводимости. Электроны этой зоны, называемые электронами проводимости, совершают беспорядочное движение внутри тела, переходя от одних атомов к другим. Именно электроны проводимости обеспечивают высокую электропроводность металлов.
У металлов зона проводимости непосредственно примыкает к валентной зоне. Поэтому при нормальной температуре в металлах большое число электронов имеет энергию, достаточную для перехода из валентной зоны в зону проводимости. Практически каждый атом металла отдает в зону проводимости, по крайней мере, один электрон. Таким образом, число электронов проводимости в металлах не меньше числа атомов.
18. Электрический ток в растворах и расплавах электролитов. Закон Фарадея для электролиза
Электролитами называют водные растворы солей, кислот и щелочей, а также расплавы солей.
Распад на ионы молекул растворяемого вещества под действием молекул растворителя называют электролитической диссоциацией.
Если в электролит поместить два электрода (катод и анод) с некоторой разностью потенциалов, то ионы начнут двигаться упорядоченно: положительные к катоду, а отрицательные к аноду.
Электрический ток в электролитах представляет собой направленное движение ионов.
Процесс выделения вещества на электродах или вблизи них при прохождении тока через электролиты называю электролизом.
Применения электролиза.
1. Гальваностегия (золочение, серебрение, никелирование изделий).
2. Гальванопластика (получение копий).
3. Получение чистых металлов (медь, алюминий), а также очистка металлов от примесей.
4. Электрическая полировка металлических изделий.
5. Получение водорода.
Согласно закону Фарадея для электролиза:
масса вещества, выделившегося при электролизе, прямо пропорциональна силе тока и времени его прохождения через электролит.
m = k I t = k q
k – электрохимический эквивалент вещества (зависит от атомной массы и валентности вещества),
q – заряд, прошедший через раствор электролита за время t.
... Эйнштейн интерпретировал преобразования Лоренца кинетически, т.е. как характеризующие свойства движения в пространстве и времени, тем самым заложив основы теории относительности. Он снял проблему эфира, упразднив его, радикально изменил классические представления о пространстве и времени. Явления, описываемые теорией относительности, называются релятивистскими (от латинского - относительный) и ...
... подобием нейтрона, оставаясь гравитоном для Желтой материи, а позитрон приобретает положительный заряд и все качества, присущие протону в нашем пространстве. Это ЕДИНЫЙ ЗАКОН МАТЕРИИ ВСЕЛЕННОЙ, и он правомерен во всех ее пространствах. Протон и нейтрон образуют не некое слипшееся бесформенное образование, а активную сферу сильного (ядерного) орбитального взаимодействия частиц, именуемую ядром ...
... – положительный и отрицательный. К настоящему времени существует экспериментальное доказательство существования как вещества, так и антивещества. Предсказаны и зарегистрированы нейтрино и антинейтрино [44]. Изложенные основы теории непустого эфира, отчетливо демонстрируют этот первый шаг самоорганизации вещества. Следующие шаги ведут к образованию более сложных форм материи, вплоть до создания ...
... мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее. Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля. 1. Комбинаторика. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с ...
0 комментариев