Расчет токов короткого замыкания

Электроснабжение механического завода местной промышленности
Технологический процесс коксохимического производства По известным удельным расходам электроэнергии и производительности цеха или предприятия в единицах продукции Построение графиков электрических нагрузок Определения центра электрических нагрузок По условию коронного разряда и уровню радиопомех провод такого сечения можно использовать Сечение провода рассчитывают по экономической плотности тока Определяют показатели аварийных отключений вводов Определяем показатели аварийных отключений вводов Выбор системы питания Издержки на амортизацию и обслуживание Выбор системы распределения Расчет потерь в трансформаторах цеховых КТП Выбор способа канализации электроэнергии Расчет токов короткого замыкания Выбор аппаратов напряжением 6 кВ По номинальному напряжению Аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальный ток до 60 А – по электродинамической стойкости Расчет самозапуска электродвигателей Расчет релейной защиты Защита от токов внешних замыканий на землю на стороне ВН Охрана труда Меры по снижению и устранению опасных и вредных факторов
169921
знак
30
таблиц
28
изображений

8. Расчет токов короткого замыкания

Токи КЗ рассчитываются на линейных вводах высшего напряжения трансформатора ППЭ (К-1), на секциях шин 6 кВ ППЭ (К-2), на шинах 0,4 кВ ТП4 (К-3). Исходная схема для расчета токов КЗ представлена на рис.9, а схемы замещения на рис.10 для расчета токов КЗ выше 1000 В, на рис. 11 для расчетов КЗ ниже 1000 В.

Расчет токов КЗ в точке К-1 и К-2 проводим в относительных единицах. Для точки К-4 расчет будем проводить в именованных единицах без учета системы, так как система большой мощности и её можно считать источником питания с неизменной ЭДС и нулевым внутренним сопротивлением. Для точки К-2 будем учитывать подпитку от электродвигателей.

Рис. 9. Исходная схема для расчетов токов КЗ

Рис. 10 Схема замещения для расчета токов КЗ выше 1000 В

Рис.11 Схема замещения для расчета токов КЗ ниже 1000 В

Расчет токов короткого замыкания в установках напряжением выше 1000 В имеет ряд особенностей:

·  Активные элементы систем электроснабжения не учитывают, если выполняется условие r<(x/3), где r и x-суммарные сопротивления элементов СЭС до точки К.З.

·  При определении тока К.З. учитывают подпитку от двигателей высокого напряжения.

Расчет [КА1] токов короткого замыкания производится для выбора и проверки электрических аппаратов и токоведущих частей по условиям короткого замыкания, с целью обеспечения системы электроснабжения надежным в работе электрооборудованием.

Базисные условия: Sб=950 МВА, Uб1=115 кВ, Uб2=6,3 кВ ; Xc=0,6;

Базисный ток определяем из выражения


кА.

кА.

Точка К-1.

Сопротивление воздушной линии, приведенное к базисным условиям

;

Х0-удельное реактивное сопротивление провода, Ом/км.

l-длина линии, км;

Uб- среднее напряжение;

Сопротивления системы до точки К-1

ХК1сВЛ=0,6+0,218=0,818;

Начальное значение периодической составляющей тока в точке К-1:

 кА.

Принимаем значение ударного коэффициента kуд=1,8, тогда значение ударного тока

 кА.

Где Куд- ударный коэффициент тока К.З. 2.45 [2]по таблице, кА.

I”по(к-1)-начальное действующее значение периодической составляющей, кА.


Точка К-2

Точка К-2 расположена на шинах РУНН ПГВ.

Сопротивление силового трансформатора на ППЭ :

Трансформатор типа ТРДН-25000/110 с расщепленной обмоткойН.Н

.

,

.

К сопротивлениям до точки К-1 прибавляется сопротивление трансформатора.

ХК-2К-1В Н1 =0,818+6,982+0,498=8,3.

Ток короткого замыкания от системы:

 кА.

В этой точке необходимо учитывать подпитку тока КЗ от синхронных двигателей.

Определяется сопротивление подпитывающей цепочки.

Сопротивление двигателей и кабельной линии от двигателей цеха № 13 до шин РУНН ПГВ (для двигателей мощностью P=630кВт СДН15-34-12-у3):

F=150; l=0,24 км; Х0=0,074 Ом/км; r0=0,206 Ом/км.


;

;

;

где Х”d- сверхпереходное индуктивное сопротивление двигателя.

.

Сопротивление двигателей и кабельной линии от двигателей цеха №19 до шин РУНН ПГВ (для двигателей мощностью P=1250 кВт СДН16-41-12у3):

F=50; l=0,209 км; Х0=0,083Ом/км; r0=0,62 Ом/км.

;

;

;

где Х”d- сверхпереходное индуктивное сопротивление двигателя.

.

Сопротивление кабельной линии от ПГВ до РП2.

l=0,256 км; Х0=0,074 Ом/км; r0=0,206 Ом/км.


;

;

.

Сопротивление двигателей и кабельной линии от цеха №24 до РП2 (для двигателей мощностью P=630 кВт СДН15-34-12у3):

F=50; l=0,09 км; Х0=0,083 Ом/км; r0=0,62 Ом/км.

;

;

;

где Х”d- сверхпереходное индуктивное сопротивление двигателя.

.

Сопротивление двигателей и кабельной линии от двигателей цеха № 22 до шин РП2 (для двигателей мощностью P=500 кВт СДН-14-41-12у3):

F=50; l=0,17 км; Х0=0,083 Ом/км; r0=0,62 Ом/км.

;

;

;


где Х”d- сверхпереходное индуктивное сопротивление двигателя.

.

Сопротивление двигателей и кабельной линии от двигателей цеха №3 до шин РП1 (для двигателей мощностью P=800 кВт СДН-14-49-6у3):

F=150; l=0,04 км; Х0=0,074 Ом/км; r0=0,206 Ом/км.

;

;

;

где Х”d- сверхпереходное индуктивное сопротивление двигателя.

.

Сопротивление кабельной линии от ПГВ до РП1.

l=0,213 км; Х0=0,073 Ом/км; r0=0,167 Ом/км.

;

;

.


Сопротивление двигателей и кабельной линии от цеха №5 до РП1 (для двигателей мощностью P=630 кВт СДН15-34-12-у3):

F=120; l=0,114 км; Х0=0,076 Ом/км;

r0=0,258Ом/км.

;

;

;

где Х”d- сверхпереходное индуктивное сопротивление двигателя.

.

Производим дальнейшие преобразования:

Эквивалентное сопротивление двигателей и кабельных линий:


Эквивалентное сопротивление :

Ток подпитки от двигателей:

 кА.

. тока:

Тогда значение ударного

 кА.

Точка [КА2] К-3

Определяется периодическая составляющая тока короткого замыкания в точке К-3.

;

; ;


;


.


Периодическая составляющая тока короткого замыкания в момент времени t=0 в точке К-3:

 кА.

Ток подпитки от синхронного двигателя:

 кА.

Полный ток короткого замыкания:

=9,67+9,39=19,1 кА;

Приняв ударный коэффициент kуд=1,4, получаем ударный ток К.З.

 кА.

Точка К-4.

Определяется ток К.З.в точке К-4.

Для практических расчетов принято считать, что всё, находящееся выше шин ВН ТП есть система с бесконечной мощностью(Sс=¥; хс=0).. Расчет производится в именованных единицах для ТП-5

Сопротивление трансформаторов ТМЗ-630/6 таблица 2.50 [2]:

 

RТ = 3,4 мОм; ХТ = 13,5 мОм;



Для определения сечения шинопровода находится расчетный ток в ПАР:

А.

где Ip-расчетный ток в аварийном режиме;

Выбираются шины прямоугольного сечения 100х6 Iдоп=1425А, длина шины 10м.

Сопротивление шин(R0=0,034 мОм/м Х0=0,016 мОм/м):

Rшин=0,34 мОм; Хшин=0,16мОм


Сопротивление автоматического выключателя включает в себя сопротивление токовых катушек расцепителей и переходных сопротивлений подвижных контактов(3): Тип ВА55-43 Iном=1600 А;

Rавт=0,14 мОм; Хавт=0,08 мОм;

Трансформатор тока типа ТПОЛ-1500/5-одновитковый Хтт=0;Rтт=0;

Cопротивление дуги определяется расстоянием между фазами проводников в месте короткого замыкания .Для трансформатора ТМЗ 630/6 Rдуги=7 мОм;

Результирующее сопротивление схемы замещения до точки K-4:

 мОм.

Начальное значение тока короткого замыкания:

 кА.

Ударный коэффициент :

 

 кА.


Значение токов короткого замыкания по заводу.

Таблица 8

К-1 К-2 К-3 К-4

I”по,кА

5,83 10,49 19,1 13

iуд, кА

14,8 39,4 42,92 20,08

9. Выбор электрических аппаратов

 

9.1 Выбор аппаратов напряжением 110 кВ

Выберем выключатель 110 кВ

Условия выбора:

1.По номинальному напряжению

2.По номинальному длительному току.

Условия проверки выбранного выключателя.

1.  Проверка на электродинамическую стойкость:

1.1.  По удельному периодическому току КЗ

1.2.  По ударному току КЗ

2.  Проверка на включающую способность.

2.1.  По удельному периодическому току КЗ

2.2.  По ударному току КЗ

3.  Проверка на отключающую способность

3.1.  По номинальному периодическому току отключения

3.2.  По номинальному апериодическому току отключения

4.  Проверка на термическую стойкость.

Расчетные данные сети:

Расчетный ток послеаварийного режима IР = 165 А был найден в пункте 5.3. по формуле (5.3.4)

Расчетное время

где tРЗ – время срабатывания релейной защиты (обычно берется минимальное значение); в данном случае для первой ступени селективности tРЗ = 0,01 с.

tСВ – собственное время отключения выключателя (в данный момент пока не известно) действующее значение периодической составляющей начального тока КЗ IПО = 5,83 кА было рассчитано в пункте 7.1.;

Периодическая составляющая тока КЗ в момент расхождения контактов выключателя IПt в следствие неизменности во времени тока КЗ принимается равной периодической составляющей начального тока КЗ: IПt = IПО = кА;

Апериодическая составляющая полного тока КЗ в момент расхождения контактов выключателя определяется по выражению:

и будет определено позже;

расчетное выражение для проверки выбранного выключателя по апериодической составляющей полного тока КЗ:

расчетный импульс квадратичного тока КЗ

будет определено позже.

Согласно условиям выбора из [7] выбираем выключатель ВВЭ-110Б-16/1000 со следующими каталожными данными:

 

UНОМ = 110 кВ; IНОМ = 1000 А; IН откл = 16 кА; b = 25%; iпр СКВ = 67 кА; Iпр СКВ = 26 кА; iН вкл = 67 кА; IН вкл = 26 кА; IТ = 26 кА; tТ = 3 с; tСВ = 0,05 с.


Определяем оставшиеся характеристики:

Расчетное время по формуле :

  с

Апериодическая составляющая полного тока КЗ в момент расхождения контактов выключателя по формуле :

 кА

Расчетное выражение согласно формуле :

кА

Расчетный импульс квадратичного тока КЗ по формуле :

 кА2×с

Расчетные данные выбранного выключателя: проверка выбранного выключателя по апериодической составляющей полного тока КЗ

  кА

Проверка по термической стойкости:

  кА2×с


Выбор и проверка выключателя представлен в табл. 13.

Выберем разъединитель 110 кВ

Условия выбора:

1.По номинальному напряжению.

2.По номинальному длительному току.

Условия проверки выбранного разъединителя:

1.Проверка на электродинамическую стойкость.

2.Проверка на термическую стойкость.

Для комплексной трансформаторной подстанции блочного типа КТПБ-110/6-104 тип разъединителя согласно [7] РНД3.2-110/1000 или РНД3-1б-110/1000.

Согласно условию выбора с учетом вышесказанного из [7] выбираем разъединитель РНД3.2-110/1000 У1 со следующими каталожными данными:

 

UНОМ = 110 кВ; IНОМ = 1000 А; iпр СКВ = 80 кА; IT = 31,5 кА; tТ = 4 с.

Расчетные данные выбранного разъединителя термическая стойкость:

  кА2×с

Выбор и проверка разъединителя представлены в табл. 13

Таблица 13. Выбор аппаратов напряжением 110 кВ

Условия выбора (проверки) Данные сети Выключатель Разъединитель

Uсети £ UНОМ

110 кВ 110 кВ 110 кВ

IР £ IНОМ

116,9 А 1000 А 1000 А

IПО £ IПР СКВ

6,21 кА 26 кА

iуд £ iпр СКВ

15,81 кА 67 кА

IПО £ IН.вкл

6,21 кА 26 кА

iуд £ iН.вкл

15,81 кА 67 кА 80 кА

IПt £ IН. откл

6,21 кА 26 кА

£

11,43 кА 28,28 кА

4,24 кА2×с

2028 кА2×с

3969 кА2×с


Информация о работе «Электроснабжение механического завода местной промышленности»
Раздел: Физика
Количество знаков с пробелами: 169921
Количество таблиц: 30
Количество изображений: 28

Похожие работы

Скачать
154193
27
28

... повреждения или отключения другой. 1. Определяют ток в линии в нормальном и послеаварийном режимах:  (6.1.5)  (6.1.6) 2. Сечение провода рассчитывают по экономической плотности тока: Для текстильного комбината: Тма = 6200-8000 ч., Тмр = 6220ч. [10]. Следовательно jэк = 1 А/мм2 [9].  (6.1.7) По полученному сечению выбирают алюминиевый провод со стальным сердечником марки АС-120/19. ...

Скачать
141057
18
4

... 7 70,1 42,3≈50 70,1 50 13,5 185 8 68,7 40,4≈50 68,7 50 13,5 185 9 50 29,4≈50 50 50 13,5 185 10 240 140≈150 240 150 13,5 185 В системе электроснабжения завода применяются всего три вида сечений КЛ, поэтому требуется производить унификацию. Таким образом для прокладки внутризаводской сети используем кабели следующих сечений: ВВГ 3*50,ВВГ 3*300, ...

Скачать
125619
17
5

... или двигателя. ·  Местное управление – это управление приводом выключателя, разъединителя и другой аппаратуры непосредственно на месте. ·  Автоматическое управление – его используют в системе электроснабжения предприятий с большой потребляемой мощностью. Автоматическое управление осуществляется с помощью вычислительных машин управления ВМУ. Информация, поступающая в ВМУ, обрабатывается и ...

Скачать
124039
16
9

... , то установка на подстанции компенсирующих устройств экономически оправдана. 3.9 Основные технико-экономические показатели системы электроснабжения механического цеха Основные технико-экономические показатели системы электроснабжения цеха приводятся в таблице 3.8. Таблица 3.8 – Основные технико-экономические показатели Показатель Количественное значение Численность промышленно- ...

0 комментариев


Наверх