Защита от токов внешних замыканий на землю на стороне ВН

Электроснабжение механического завода местной промышленности
Технологический процесс коксохимического производства По известным удельным расходам электроэнергии и производительности цеха или предприятия в единицах продукции Построение графиков электрических нагрузок Определения центра электрических нагрузок По условию коронного разряда и уровню радиопомех провод такого сечения можно использовать Сечение провода рассчитывают по экономической плотности тока Определяют показатели аварийных отключений вводов Определяем показатели аварийных отключений вводов Выбор системы питания Издержки на амортизацию и обслуживание Выбор системы распределения Расчет потерь в трансформаторах цеховых КТП Выбор способа канализации электроэнергии Расчет токов короткого замыкания Выбор аппаратов напряжением 6 кВ По номинальному напряжению Аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальный ток до 60 А – по электродинамической стойкости Расчет самозапуска электродвигателей Расчет релейной защиты Защита от токов внешних замыканий на землю на стороне ВН Охрана труда Меры по снижению и устранению опасных и вредных факторов
169921
знак
30
таблиц
28
изображений

12.4 Защита от токов внешних замыканий на землю на стороне ВН

Защита предусматривается для трансформаторов с глухим заземлением нейтрали обмотки высшего напряжения при наличии присоединенных синхронных электродвигателей в цепях резервирования отключения замыканий на землю на шинах питающей подстанции и для ускорения отключения однофазного КЗ в питающей линии выключателями низшего напряжения трансформатора. Реле максимального тока защиты подключается к трансформатору тока, встроенному в нулевой вывод обмотки ВН трансформатора.

12.5 Защита от токов перегрузки

Согласно [3] на трансформаторах 400 кВА и более, подверженных перегрузкам, предусматривается максимальная токовая защита от токов перегрузки с действием на сигнал с выдержкой времени. Устанавливается на каждой части расщепленной обмотки. Продолжительность срабатывания такой защиты должны быть выбраны примерно на 30% больше продолжительности пуска или самозапуска электродвигателей, получающих питание от защищаемого трансформатора, если эти процессы приводят к его перегрузке.


13. Расчет молниезащиты и заземляющего устройства ПГВ

Защита от прямых ударов молнии установок, зданий и сооружений независимо от их высоты должна быть выполнена отдельностоящими тросовыми или стержневыми молниеотводами.

Открытые распределительные устройства (ОРУ) подстанций 20-500 кВ защищают от прямых ударов молнии стержневыми молниеотводами. Защиту ОРУ 110 кВ можно выполнить на конструкциях независимо от площади заземляющего контура подстанции. При этом от стоек конструкции ОРУ 110 кВ нужно обеспечить растекание тока не менее, чем в двух-трех направлениях и установить вертикальные электроды длиной 3-5 метра на расстоянии не менее длины электрода. Для экономии металла молниеотводы необходимо установить на конструкциях (порталах, опорах линии, прожекторных мачтах и т.п.) и на закрытых распределительных устройствах (ЗРУ). Сами здания, имеющие железобетонные несущие конструкции кровли защищать молниеотводами не требуется.

Защитное действие стержневого молниеотвода основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. Во время лидерной стадии развития молнии на вершине молниеотвода накапливаются заряды, создающие на ней очень большие напряженности электрического поля. К этой области и направляется канал молнии.

Зоной защиты молниеотвода называется пространство вокруг него, в котором объект защищен от прямых ударов молнии с определенной степенью надежности. Защищаемый объект не поражается молнией, если он целиком входит в зону защиты молниеотвода.

Защита ПГВ от прямых ударов молнии производится с помощью стержневых молниеотводов. Два молниеотвода устанавливаются на порталах ОРУ 110 кВ, других на ЗРУ.

Условие защищенности всей площади ПГВ выражается соотношением:


,

где D – диаметр окружности, м;

Р – коэффициент для разных высот молниеотводов (до 30 м Р = 1);

hа – активная высота молниеотвода, м.

Минимальная активная высота молниеотвода

 

Принимаем hа = 5 м.

Молниеотводы характеризуются высотой h:

где hх – высота заземляемого объекта (hх = 12 м.)

 м

Зона защиты молниеотвода представляет собой конус, с криволинейной образующей. Радиус зоны защиты определяется по формуле:

  м

Наименьшая ширина зоны защиты bх в середине между молниеотводами (на горизонтальном сечении) на высоте hХ определяется по формуле:


где а – расстояние между молниеотводами

 м

Граница зоны защиты между молниеотводами (в вертикальном сечении) определяется радиусом R, проходящей через вершины молниеотводов и точку А, распложенную по средине между молниеотводами на высоте h0, м

 м

Самые высокие объекты входят в зону защиты молниеотводов.

Условия защищенности всей площади выполняется:

(38 £ 40 м)

Воздушные линии на железобетонных опорах защищаются тросовыми молниеотводами на подходе к подстанции. Длина подхода 2 км. Защитный угол тросового молниеотвода равен 25 градусов.

Защитное заземление необходимо для обеспечения безопасности персонала при обслуживании электроустановок. К защитному заземлению относятся заземления частей установки, нормально не находящейся под напряжением, на которые могут оказаться под ним при повреждении изоляции. Заземление позволяет снизить напряжение прикосновения до безопасного значения.

Произведем расчет заземляющего устройства ПГВ.

Установим необходимое допустимое сопротивление заземляющего устройства. В данном случае заземляющее устройство используется одновременно для установок выше 1000 В с заземленной нейтралью и изолированной нейтралью. Согласно [10] сопротивление растекания RЗ для установок свыше 1000 В с заземленной нейтралью RЗ £ 0,5 Ом, а для установок свыше 1000 В с изолированной нейтралью , но не более 10 Ом. Из двух сопротивлений выбираем наименьшее, т.е. RЗ £ 0,5 Ом.

Определим необходимое сопротивление искусственного заземлителя RН. Так как данных о естественных заземлителях нет, то RН = RЗ = 0,5 Ом.

Выберем форму и размеры электродов, из которых будем сооружать групповой заземлитель. В качестве вертикальных электродов выбираем прутки длиной 5 м, диаметром 14 мм. Эти заземлители наиболее устойчивы к коррозии и долговечны. Кроме того, их применение приводит к экономии металла. Прутки погружаем в грунт на глубину 0,7 м с помощью электрозаглубителей. В качестве горизонтальных электродов применяем полосовую сталь сечением 4х40 мм. Во избежания нарушения контакта при возможных усадках грунта укладываем ее на ребро. Соединение горизонтальных и вертикальных электродов осуществляем сваркой.

Размеры подстанции 37х28 м. Тогда периметр контурного заземлителя равен Р = 2 × (37 – 4 + 28 – 4) = 114 м, а среднее значение расстояния между электродами:

  м

где nВ – предварительное число вертикальных электродов.

Отношение а/1 = 1,9/5 = 0,38, тогда из [10] коэффициент использования вертикальных электродов Кuверт = 0,29.

Определяем расчетное удельное сопротивление грунта отдельно для горизонтальных и вертикальных электродов с учетом повышающих коэффициентов КС, учитывающих высыхание грунта летом и промерзания его зимой.

Расчетное удельное сопротивление грунта для вертикальных электродов:

где КС.В. = 1,3 – коэффициент сезонности для вертикальных электродов и климатической зоны 2 согласно [10].

r0 = 40 – удельное сопротивление грунта для глины, Ом×м.

Расчетное удельное сопротивление грунта для горизонтальных электродов:

где КС.Г. = 3 – коэффициент сезонности для горизонтальных электродов и климатической зоны 2 согласно [10];

 Ом×м  Ом×м

Определим сопротивление растеканию тока одного вертикального электрода:


где l = 5 м – длина вертикального электрода, м;

d = 14 × 10-3 диаметр электрода, м;

t = 3,2 – расстояние от поверхности грунта до середины электрода, мм;

 Ом

Определим примерное число вертикальных электродов nВ при предварительно принятом коэффициенте использования вертикальных электродов Кu верт = 0,29:

 

Принимаем nВ = 80 шт.

Определим сопротивление растеканию тока горизонтального электрода:

где l = 114 – длина горизонтального электрода, м;

t = 3,2 – глубина заложения, м;

dЭ – эквивалентный диаметр электрода, м;

 Ом


Уточненные значения коэффициентов использования: Кu верт = 0,276; Кuгор = 0,161, тогда уточненное число вертикальных электродов с учетом проводимости горизонтального электрода:

 шт.

Принимаем nВ.У. = 81 шт.

 ,

Меньше на 10%, следовательно, окончательное число вертикальных электродов – 81.

Для выравнивания потенциала на поверхности земли с целью снижения напряжения прикосновения и шагового напряжения на глубине 0,7 м укладываем выравнивающую сетку с размером ячейки 3,6х6 м. План подстанции с контурным заземлением представлен на рис.14.



Информация о работе «Электроснабжение механического завода местной промышленности»
Раздел: Физика
Количество знаков с пробелами: 169921
Количество таблиц: 30
Количество изображений: 28

Похожие работы

Скачать
154193
27
28

... повреждения или отключения другой. 1. Определяют ток в линии в нормальном и послеаварийном режимах:  (6.1.5)  (6.1.6) 2. Сечение провода рассчитывают по экономической плотности тока: Для текстильного комбината: Тма = 6200-8000 ч., Тмр = 6220ч. [10]. Следовательно jэк = 1 А/мм2 [9].  (6.1.7) По полученному сечению выбирают алюминиевый провод со стальным сердечником марки АС-120/19. ...

Скачать
141057
18
4

... 7 70,1 42,3≈50 70,1 50 13,5 185 8 68,7 40,4≈50 68,7 50 13,5 185 9 50 29,4≈50 50 50 13,5 185 10 240 140≈150 240 150 13,5 185 В системе электроснабжения завода применяются всего три вида сечений КЛ, поэтому требуется производить унификацию. Таким образом для прокладки внутризаводской сети используем кабели следующих сечений: ВВГ 3*50,ВВГ 3*300, ...

Скачать
125619
17
5

... или двигателя. ·  Местное управление – это управление приводом выключателя, разъединителя и другой аппаратуры непосредственно на месте. ·  Автоматическое управление – его используют в системе электроснабжения предприятий с большой потребляемой мощностью. Автоматическое управление осуществляется с помощью вычислительных машин управления ВМУ. Информация, поступающая в ВМУ, обрабатывается и ...

Скачать
124039
16
9

... , то установка на подстанции компенсирующих устройств экономически оправдана. 3.9 Основные технико-экономические показатели системы электроснабжения механического цеха Основные технико-экономические показатели системы электроснабжения цеха приводятся в таблице 3.8. Таблица 3.8 – Основные технико-экономические показатели Показатель Количественное значение Численность промышленно- ...

0 комментариев


Наверх