3.3. Виртуальный уровень.

На рисунке 1а изображены два однофотонных перехода: сначала поглощается один фотон с энергией  и микрообъект переходит с уровня 1 на уровень 2, затем поглощается другой фотон и микрообъект переходит с уровня 2 на уровень 3. А как изобразить двухфотонный переход, в котором поглощаются два фотона с энергиями ? Такой переход принято изображать так, как показано на рисунке 1б, на котором пунктиром показан так называемый виртуальный уровень.|

Что такое «виртуальный уровень»? Объясняя это понятие, напомним, что двухфотонный переход нельзя разбить во времени на два этапа. Отсюда следует, что принципиально нельзя обнаружить микрообъект на виртуальном уровне (в противном случае можно было бы говорить о двух этапах — до обнаружения и после обнаружения микрообъекта). Именно этим и отличается виртуальный уровень от обычного энергетического уровня.

Можно ли заключить отсюда, что виртуальный уровень оказывается «несуществующим», «нереальным»? Ведь на любом реально существующем энергетическом уровне микрообъект может быть в принципе обнаружен!

Мы не станем обсуждать здесь степень реальности (или нереальности) виртуальных уровней. Для нас главное состоит в том, что реально существуют как однофотонные, так и многофотонные переходы. И если для представления однофотонных переходов достаточно системы обычных (реальных) энергетических уровней, то для представления многофотонных переходов такой системы уровней уже недостаточно приходится обращаться к специфическому понятию - понятию виртуальных уровней. Приведенный на рисунке 1 пример достаточно ясно, показывает специфику это понятия.

3.4. Каким образом микрообъект играет роль «посредника» в процессах преобразования «света» в «свет»?

Рассмотрим различные процессы «превращения» одних фотонов в другие фотоны. Начнем с процесса, представленного на рисунке 2. Микрообъект поглощает фотон с энергией  и переходит с уровня 1 на уровень 3. Затем он испускает фотон энергией  и переходит с уровня 3 на уровень 2. Таким

образом, исходный (первичный) фотон с энергией  «превращается» в конечный (вторичный) фотон с энергией . Роль «посредника» в этом «превращении» играет микрообъект. Впрочем, здесь микрообъект оказался не просто «посредником» — ведь его состояние тоже изменилось: он перешел в итоге с уровня 1 на уровень 2.

Более выпукло роль микрообъекта как «посредника» между фотонами (именно «посредника» и не более) проявляется в процессе, представленном на рисунке 3а. Микрообъект поглощает фотон с энергией  и переходит с уровня 1 на уровень 2. Затем он испускает фотон с такой же энергией и возвращается на уровень 1. Итак, состояние микрообъекта в конечном счете не меняется; в то же время первичный фотон «превращается» во вторичный. Этот последний имеет такую же энергию, но, разумеется, может отличаться как направлением импульса, так и поляризацией.

Далее обратимся к процессу, показанному на рисунке 3б (пунктиром изображен виртуальный уровень). В отличие от двух предыдущих процессов мы имеем здесь не два однофотонных перехода, а один двухфотонный переход. Если в процессе, показанном на рисунке 3а, микрообъект в принципе можно обнаружить на уровне 2 (в промежутке между поглощением первичного и испусканием вторичного фотона), то теперь ситуация совершенно иная: принципиально нельзя обнаружить микрообъект на виртуальном уровне; не существует никакого «промежутка» времени между поглощением первичного и испусканием вторичного фотона. Более того, нельзя даже утверждать, что сначала поглощается первичный фотон, а затем испускается вторичный. Процесс поглощения и испускания является в данном случае единым, неделимым во времени процессом; при этом в принципе невозможно обнаружить какого-либо, даже временного изменения состояния микрообъекта.

Таким образом, в рассмотренном двухфотонном процессе микрообъект выступает как весьма своеобразный, можно сказать, весьма «тактичный» посредник, остающийся «в тени».

3.5. Процесс, описывающий генерацию второй гармоники.

Многофотонные процессы, в которых начальное и конечное состояния микрообъекта одинаковы, представляют для нелинейной оптики особый интерес. Выше мы рассмотрели двухфотонный процесс. Далее рассмотрим два трехфотонных процесса.

Первый из них представлен на рисунке 4 (пунктиры изображают виртуальные уровни). Микрообъект участвует в трехфотонном переходе: происходит поглощение двух фотонов с энергиями  и испускание одного фотона с энергией 2; состояние микрообъекта не меняется. Поскольку в подобных процессах микрообъект как «посредник» «остается в тени», можно рассматривать как бы непосредственное «превращение» двух фотонов в один (два фотона, сталкиваясь друг с другом, превращаются в новый фотон). При этом выполняются законы сохранения энергии и импульса для фотонов:

(3.1)

(3.1/)

(здесь  и  — импульсы поглощенных фотонов, а  -импульс испущенного фотона).

Рассмотренный процесс называют в нелинейной оптике генерацией второй гармоники. Он описывает «превращение» света с частотой  в свет с частотой 2. Более подробно явление генерации второй гармоники будет рассмотрено ниже.

На рисунке 5 представлен трехфотонный процесс при котором поглощается один фотон с энергией  и испускаются два фотона — с энергиями  и  ;состояние микрообъекта не меняется. Этот процесс можно рассматривать в известном смысле как «распад» одного (первичного) фотона на два новых (вторичных) фотона. При этом для фотонов, участвующих в процессе, выполняются законы сохранения энергии и импульса:

(3.2)

(3.2/)

Рассмотренный процесс называют параметрической генерацией света. Он описывает «превращение» световой волны с частотой  в две новые световые волны — с частотами  и . В принципе любую из этих частот (например частоту ) можно, по желанию, плавно варьировать в пределах от нуля до .

Может возникнуть сомнение, действительно ли процессы, изображенные на рисунках 4 и 5, требуют участия микрообъекта в качестве «посредника». Не взаимодействуют ли в этих процессах фотоны друг с другом непосредственно, без какого-либо «посредника»?

В самом деле, почему бы не считать, что в некоторых процессах фотоны способны взаимодействовать друг с другом непосредственно? (Ведь взаимодействуют же многие другие частицы!) В таком случае можно было бы обойтись без понятия виртуальных уровней. Так, в примере, изображенном на рисунке 5, можно было бы считать, что фотон с энергией  сам по себе (без участия микрообъекта) распадается на фотоны с энергиями  и , a микрообъект попросту остается на некотором энергетическом уровне, не совершая никаких виртуальных переходов.

Однако с подобными соображениями нельзя согласиться. Как показывает опыт, процессы, изображенные на рисунках 4 и 5 (как и другие процессы), в отсутствие вещества не происходят! Как бы ни оставался микрообъект «в тени», его участие, его «посредничество» оказывается всегда решающим, поскольку оно определяет саму возможность того или иного многофотонного процесса.

IV. Преобразование одной световой волны в другую световую волну

 


Информация о работе «Нелинейная оптика»
Раздел: Физика
Количество знаков с пробелами: 38891
Количество таблиц: 0
Количество изображений: 9

Похожие работы

Скачать
51288
0
7

... проблем. С помощью голографии получают пространственные изображения предметов, регистрируют (при импульсном освещении) быстропротекающие процессы, исследуют сдвиги и напряжения в телах и т.д. Оптические явления и методы, разработанные в Оптика, широко применяются для аналитических целей и контроля в самых различных областях науки и техники. Особенно большое значение имеют методы спектрального ...

Скачать
63052
0
0

... , что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой научный интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер. Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой ...

Скачать
15476
0
1

... уравнений, описывающих нелинейные многоволновые процессы в распределенных механических системах, к нормальной форме. Изучаются вопросы возникновения резонанса в нелинейных многоволновых системах. Эволюционные уравнения Распространение слабонелинейных волн в упругих средах обычно описывается квазилинейными дифференциальными уравнениями с частными производными , где  и  - линейные ...

Скачать
29902
2
0

... для анализа, мг 5 – 10 Напряжение сети питания, В 220 Габаритные размеры, мм 800*450*600 Вес не более, кг 45   4. Применение лазерной спектроскопии в анализе объектов окружающей среды   Применение метода лазерной искровой спектроскопии в экологических исследованиях. Проблема загрязнения морей приобретает все более глобальный характер. Прогрессирующее загрязнение морской воды связано со ...

0 комментариев


Наверх