1.4  Особенности цифровой фототриангуляции

Пирамиды изображений для хранения цифровых изображений.

При обработке цифровых изображений[7] при ПФТ часто возникает необходимость просмотра снимков в уменьшенном масштабе. Для этих целей в программах ПФТ посчитанные один раз изображения уменьшенного масштаба, записываются и хранятся на диске во время всего сеанса обработки в виде «пирамид изображений». В этом случае информационное поле описывается упорядоченным набором изображений, располагаемых одно над другим.

Для формирования пирамиды изображений исходный цифровой снимок разбивается на блоки (обычно 2 х 2 пикселя). Для каждого блока вычисляется среднее арифметическое значение яркости, которое и будет присвоено пикселю для данного блока на следующем уровне пирамиды. Эта процедура повторяется необходимое число раз. Каждое последующее изображение пирамиды будет иметь разрешение в 2 раза меньше предыдущего, а занимаемый объём памяти соответственно в 4 раза

Хранение пирамид изображений оправдано, так как увеличевает скорость обработки.

Тайловая структура организации данных цифровых изображений.

В качестве модели организации данных цифровых изображений[7] используется тайловая структура, которая заключается в следующем:

Исходное изображение делится на блоки (тайлы), размер которых фиксирован.

При необходимости обработки конкретного участка изображения осуществляется перемещение на данный адрес и считывается нужный файл. Эта организация данных позволяет быстро считывать с диска и отображать на экране отдельные участки изображения.

Реляционная модель организации данных.

Для обеспечения гибкости сбора данных и хранения результатов измерения координат точек снимков в современных программных продуктах используется реляционная модель данных[7].

Таблица 1 «Сведения о точках сети» Таблица 2 «Сведения о снимках»
Номер точки Идентификатор снимка

X,Y,Z

Элементы внешнего ориентирования снимка

Описание точки Другие параметры
Таблица 3 «Сведения о точках снимка»
Номер точки
Идентификатор снимка
Измеренные х,у
Другие параметры

Таблица 1 служит для хранения номеров и координат опорных, контрольных и связующих точек (номера точек не должны повторяться).

Таблица 2 служит для хранения информации о снимках, используемых в обработке. В качестве данных выступают идентификатор снимка, элементы внешнего ориентирования, результаты внутреннего ориентирования снимка и т.п.

В таблице 3 хранятся непосредственно измеренные координаты точек снимков х,у. Каждому измерению х,у в этой таблице соответствует номер измеряемой точки и идентификатор снимка, на котором производилось измерение.

Такая организация данных позволяет однозначно сопоставить каждому измерению соответствующую точку местности (сети) и снимок, на котором выполнено измерение. Она позволяет хранить «бесконечное» число опорных, контрольных, связующих точек и результатов измерения их координат.

Алгоритмы автоматического отождествления соответственных точек снимков.

Ключевым алгоритмом автоматизации фотограмметрических измерений является поиск соответственных точек на паре снимков[7].

В соответствии с методами представления видеоинформации все множество алгоритмов отождествления можно разделить на три класса:

-  алгоритмы площадного сопоставления (ABM), основанные на сравнении двумерных функций изображений;

-  алгоритмы, базирующиеся на сопоставлении структурных описаний (FBM);

-  алгоритмы, в основе которых лежит разложение функции изображения по некоторому базису.

Рассмотрим подробнее первую группу. Здесь в качестве примитивов (элементов описаний), участвующих при сопоставлении двух изображений служат пиксели. Точность этих алгоритмов составляет от 0,1 до 0,2 размера пикселя. Они чувствительны к изменению радиометрических и геометрических свойств изображения, требуют больших вычислительных затрат и характеризуются большой вероятностью грубой ошибки в областях расположения высотных объектов и плохих или повторяющихся структур. Примерами площадных алгоритмов являются алгоритм взаимной корреляции и метод наименьших квадратов. Критерием подобия для этих алгоритмов соответственно служат коэффициент взаимной корреляции и сумма квадратов разностей значений яркостей сопряженных участков изображений.

Mетод взаимной корреляции.

Суть метода заключается в вычислении функции взаимной корреляции, которую для дискретных функций можно записать в виде:

(1.23)

где p и q – продольный и поперечный параллаксы на изображении f2(x, y).

M и N – соответственно ширина и высота образца или пределы, в которых определена функция f1(x,y).

Функция взаимной корреляции обладает следующими свойствами:

1) 

2)  если f1(x,y) и f2(x-p,y-q) независимы, то C(p, q)=0;

3)  C(p,q)=1 тогда и только тогда, когда существует такое число b¹0, что .

Фактически алгоритм отыскания соответствия между функциями f1(x,y) и f2(x-p, y-q) сводится к нахождению таких p0 и q0, при которых функция C(p, q) максимальна.

Преимущество этого метода простота реализации.

К недостаткам алгоритма взаимной корреляции относятся:

-  большой объем вычислений;

-  алгоритм устойчиво работает только при следующих условиях: снимаемая местность плоская, взаимные углы наклона и разворота снимков не превышают 20-30°, а разномасштабность снимков менее 20-30%.

Метод наименьших квадратов

Для метода наименьших квадратов в качестве критерия подобия служит функция суммы квадратов разностей между яркостями пикселей двух изображений.

Пусть на ограниченном участке (x'[-M/2, M/2], y'[-N/2, N/2]) между функциями f1 и f2 существует зависимость:

 (1.24)

Для определения искомых величин p0 и q0 составим функцию:

 (1.25)

Данную функцию решаем под условием минимума:

, (1.26)

Если известны приближенные значения неизвестных параметров (), то раскладывая функцию(1.25) в ряд Тейлора и ограничиваясь величинами первого порядка малости получаем линейное уравнение относительно неизвестных Dp0 и Dq0:

 (1.27)

В результате приходим к системе уравнений поправок:

 (1.28)

где A – матрица коэффициентов уравнений поправок;

dX – вектор-столбец поправок к приближенным значениям неизвестных (Dp0 и Dq0);

V – вектор невязок уравнений, который характеризует величины шумовых составляющих.

От системы уравнений поправок переходим к системе нормальных уравнений:

 (1.29)

где  и .

После определения Dp0 и Dq0 уточняют значения искомых параметров p0 и q0 и затем выполняют следующую итерацию. Этот процесс повторяется до получения требуемой точности вычисления неизвестных.

Алгоритм наименьших квадратов по сравнению с методом взаимной корреляции обладает рядом следующих преимуществ.

Во-первых, метод наименьших квадратов позволяет оценить точность определения искомых параметров. Для оценки точности используют среднюю квадратическую ошибку (СКО) единицы веса, которая будет характеризовать влияние шумовых составляющих и качество образца, и СКО определения параметров p0 и q0, характеризующие точность отождествления соответственно по осям x и y. Значение СКО единицы веса определяется по известной формуле:


(1.30)

где n – количество уравнений поправок, а k – количество неизвестных.

СКО определения неизвестных p0 и q0 выражаются формулами:

 (1.31)

где  и  – соответствующие диагональные элементы обратной матрицы нормальных уравнений.

Во-вторых, метод наименьших квадратов позволяет вести не глобальный поиск соответственной точки, подставляя все возможные значения p и q, как в методе взаимной корреляции, а вдоль направления градиента функции.

В-третьих, как показывает практика, из всех разработанных алгоритмов отождествления метод наименьших квадратов дает наилучшие результаты в отношении точности.

В-четвертых, геометрические ограничения, накладываемые на положение и ориентацию снимков относительно плоскости объектов, несколько ослаблены при использовании метода наименьших квадратов по сравнению с методом взаимной корреляции.

К недостаткам метода наименьших квадратов следует отнести:

-  алгоритм, как и все методы площадного отождествления, устойчиво работает только при незначительной разномасштабности и взаимных углах наклона и разворота снимков;

-  для получения корректного решения требуется достаточно точно задать параметры p0 и q0.

Широкое распространение на практике получили следующие программные продукты цифровой фототриангуляции:

1)  Softplotter фирмы Vision;

2)  DPW фирмы Leica;

3)  Imagine Station фирмы Intergraph;

4)  Match AT – первая программа полностью автоматической ПФТ;

5)  Helava Automated Triangulation System;

6)  Phodis AT.

Среди российских ЦФС, в которых реализована программа цифровой ПФТ, распространение получили:

1)  ЦФС Photomod фирмы Ракурс;

2)  Talka, разработанная институтом проблем управления РАН;

3)  ЦНИИГАиК.

Они имеют различные алгоритмы и способы реализации, высокую скорость обработки данных, удобный пользовательский интерфейс, гибкость и универсальность, возможность интерактивного режима работы оператора на всех этапах технологических процессов построения сети. По уровню автоматизации все программы ЦФТ делятся на: автоматические и полуавтоматические.

Основными технологическими процессами, которые существуют в любой программе цифровой фототриангуляции [7] являются:

1)  создание проекта;

2)  внутреннее ориентирование снимков;

3)  измерение координат точек снимков;

4)  предварительное построение сети;

5)  уравнивание сети;

6)  оценка точности построения сети.



Информация о работе «Цифровая фототриангуляция для создания топографических карт»
Раздел: Геология
Количество знаков с пробелами: 64137
Количество таблиц: 10
Количество изображений: 9

0 комментариев


Наверх