1.2.3 Влияние центрального атома
При проведении аналитического разделения элементов или для более селективного их определения, как правило, используют несколько комплексообразующих реагентов одновременно. В первую очередь необходим реагент для собственно аналитической реакции, которая должна привести к изменению какого-либо аналитического свойства в системе (изменение окраски, появление осадка и т. д.), причем по возможности для одного катиона. Вспомогательные реагенты используют для предотвращения образования труднорастворимых соединений, для маскирования и т. д. Для маскирования обычно применяют групповые монодентатные неорганические комплексообразующие реагенты, такие, как , , . В принципе можно оценить степень разделения сравнением констант устойчивости всех комплексов, которые могут быть образованы в данной системе всеми присутствующими катионами со всеми добавленными хелатообразующими реагентами. Однако это не только утомительное и довольно смелое «предприятие», но часто практически нереальное из-за отсутствия всех необходимых данных. Поэтому целесообразно сразу же указать на возможность качественной оценки относительной устойчивости различных комплексов в зависимости от природы катиона. Катионы металлов по их способности к комплексообразованию можно разбить на определенные группы [1], для разделения и маскирования которых можно использовать групповые, или общие, реагенты.
1.3 Экстракция хелатов
Возможно, что первым сообщением об экстракции хелатов была работа, в которой ее автор в 1900 году экстрагировал хром раствором 1,5-дифенилкарбогидразида в бензоле [5]; после этого с каждым десятилетием экстракция внутрикомплексных соединений приобретает все больше и больше сфер своего применения.
На сегодняшний день имеется огромное число этих реагентов. Большинство из них хорошо экстрагируется неполярными органическими растворителями либо в виде незаряженных молекул (внутренних комплексных солей), либо в виде ионных ассоциатов, представляющих собой продукт ассоциации заряженного хелата с другими ионами. Хелатообразующие реагенты, как правило, неизбирательны, поэтому выбор условий экстракции имеет большое значение [2]. Так же они, как правило, малорастворимы в воде и хорошо растворимы в органических растворителях, что для экстракции имеет особое значение. Типичными экстракционными реагентами этого класса являются 8-оксихинолин, дитизон, ацетилацетон и др. Обычно они обладают свойствами слабой кислоты, поэтому кислотность раствора относится к числу наиболее важных факторов, определяющих полноту экстракции [6].
1.3.1 Межлигандный обмен в экстрактах комплексов металлов
Межлигандный обмен в экстрактах комплексов металлов для простейшего варианта с однозарядным лигандом можно представить равновесиями следующего типа:
MLn + nHL'ML'n + nHL (1.1)
mMLn + nM'L'mmML'n + nM'Lm, (1.2)
если поставщики лиганда – нейтральная форма реагента или соль металла, растворимая в экстракте комплекса. Примерами эффективного использования таких реакций с целью многократного снижения предела обнаружения металла могут служить реакции замены нехромогенного лиганда, используемого для экстракции и концентрирования металла, на хромогенный с последующим фотометрическим определением концентрации комплекса непосредственно в экстракте [7]. К сожалению, такие приемы не получили широкого распространения. Одна из основных причин малого использования таких реакций – отсутствие результатов системного их изучения в ряду металлов для наиболее эффективных реагентов, применяемых в концентрировании, групповом разделении и высокочувствительном экстракционно-фотометрическом определении металлов.
Редкий пример такого изучения описан в статях [8 – 9], в которых экспериментально была оценена степень протекания реакций межлигандного обмена диэтилдитиокарбамат – дитизонат в экстрактах всех металлов, с которыми дитизон образует экстрагируемые комплексы. В этих же работах предпринята попытка теоретического обоснования подхода к оценке констант межлигандного обмена в экстрактах комплексов металлов. Этот подход основан на том, что неизвестная константа равновесия обмена , в экстракте (индекс 0) пропорциональна отношению соответствующих констант экстракции комплексов, измеренных для равновесий в воде. Такое утверждение строгого доказательства не имеет. Поскольку в системе равновесий, определяющих в сумме реакцию обмена в неполярных растворителях:
,
MLnMn+ + nL-,
nL- + nH+nHL,
nHL' nH+ + nL'-,
Mn+ + nL'-ML'n,
MLn + nHL'ML'n + nHL,
измерять константы таких равновесий мы пока не можем, поэтому принято ставить в соответствие константу равновесия обмена в органической фазе , константам в водной фазе, K. В результате экспериментальной оценки констант равновесия обмена для реакций (1.1) и их сопоставление с соотношением констант экстракции проведенное в работе [9] имеет принципиальное значение для обоснования использования рядов сравнительной прочности комплексов в экстракте, построенным по константам образования и константам экстракции [10]. Следует отметить, что результаты сопоставления [9] измеренных констант обмена с соотношением констант экстракции в большинстве случаев подтверждают справедливость такого подхода к оценке степени протекания реакций типа (1.1).
Реакции типа (1.2), в которых второй комплекс является поставщиком лиганда L-, не имеют преимуществ по сравнению с реакциями (1.1) и их использование более целесообразно при введении других металлов, конкурирующих при комплексообразовании с одним лигандом, как описано в [5].
2 Эксперементальная часть
2.1 Реагенты и средства измерений
При выполнении работы использовались следующие химические реактивы:
– кислота азотная по ГОСТ 4461-77, хч;
– натрий тетраборнокислый, 10-водный по ТУ 6-09-3970-75 о.с.ч. 3 – 4;
– хлороформ;
– спирт этиловый ректификованный технический;
– 1-(2-пиридилазо)-2-нафтол, Reanal, для комплексонометрии;
– 8-оксихинолин.
Водные растворы реагентов готовили на дистиллированной воде; боратный буферный раствор () готовили растворением десятиводного тетрабората натрия в воде (9,56 г на 0,5 л раствора); исходные (стандартные) растворы Ni(II) и Cu(II) готовили из чистых металлов с содержанием примесей не более 0,1 %, растворением в концентрированной азотной кислоте.
Растворитель: хлороформ (перегнанный один раз).
Измерения проводили на фотометре КФК-3 с длинной кюветы 1 см.
0 комментариев