1.2.2 Задача про суміші

Задача визначення оптимального складу суміші виникає тоді, коли з наявних видів сировини шляхом їх змішування необхідно отримати кінцевий продукт із заданими властивостями. До цієї групи завдань відносяться, наприклад, завдання отримання сумішей для різних марок бензину в нафтопереробній промисловості, сумішей для отримання бетону в будівництві, завдання про вибір дієти, складання кормового раціону в тваринництві та інше. При цьому потрібно, щоб вартість такої суміші була мінімальною.

Нехай є m видів сировини, запаси якого становлять відповідно d1, ..., dm. З цієї сировини необхідно скласти суміш, яка містить n речовин, що визначають технічні характеристики суміші. Відомі величини визначають -кількість j-ї речовини в одиниці-го виду сировини, ціна якого дорівнює а також найменший допустимий кількість j-ї речовини в суміші.

Потрібно забрати суміш із заданими властивостями при найменших витратах на вихідні сировинні матеріали.

Для складання математичної моделі запишемо умови задачі у вигляді таблиці:

Таблиця 2.

 Вид речовини

Вид сировини

1 ... j ... n Обсяг сировини

Ціна

сировини

1

a11

...

a1j

...

a1n

d1

c1

... ... ... ... ...
i

ai1

...

aij

...

ain

di

ci

... ... ... ... ...
m

am1

...

amj

...

amn

dm

cm

Мінімальна кількість речовини в суміші

b1

...

bj

...

bn

Позначимо через хiкількість сировини і-го виду, що входить у склад суміші.

Мета завдання (цільова функція) – мінімізувати сумарні витрати на сировину:

Система обмежень включає в себе обмеження за технічними характеристиками:


а також обмеження за обсягом сировини, які з урахуванням невід’ємності будуть мати вид:

Запишемо модель у компактній формі:

при обмеженнях:


Информация о работе «Економічні задачі лінійного програмування і методи їх вирішення»
Раздел: Информатика, программирование
Количество знаков с пробелами: 25131
Количество таблиц: 7
Количество изображений: 6

Похожие работы

Скачать
12465
2
0

... програмування та її економіко – математичної моделі, опис функцій і команд у вирішенні задач лінійного програмування засобами Exel, а також рішення конкретної задачі за допомогою ПК. 1. Побудова економіко–математичної моделі Загальна модель задачі математичного програмування має такий вигляд: У структурі моделі (1.1) можна виділити 3 елементи: 1) Набір керованих змінних x1, x2, ... x ...

Скачать
26156
0
3

... і (усі сj’ ≥0), але не задовільняє критерії допуску (не всі ві ≥0). Варіант симплекс метода, який приміняється для рішення таких задач, називається двоїстим симплекс методом. За його допомоги рішаються задачі лінійного програмування виду:  (4.3.1) де система обмежень має такий вигляд і всі приведені коефіцієнти цільової функції сj’ ≥0, і=1,n. При цьому умова ві ≥0, ...

Скачать
15588
18
5

2х1+5х2 + 15х3+ 10х4 досягає максимуму при системі обмежень: Розв'язуємо задачу лінійного програмування симплексним методом. Введемо балансні змінні х5 ≥ 0, х6≥ 0, х7≥ 0. Їх величина поки що невідома, але така, що перетворює відповідну нерівність у точну рівність. Після цього, задача лінійного програмування набуде вигляду: ∫ = 12х1+5х2 + 15х3+ 10х4 → max при ...

Скачать
182691
25
29

... – відпускна ціна i-го заводу j-й продукції; - закупівельна ціна i-го заводу j-й продукції, - шуканий обсяг закупівель на i-м заводі j-й продукції.   2.5 Перевірка моделі оптимізації на контрольному прикладі В цьому підрозділі на прикладі підприємства ТОВ "Гермес-Груп" розрахуємо модель (2.4.5) за допомогою електроних таблиць MSEcxel. Цільова функція має вигляд: де - об’єм закупівлі; ...

0 комментариев


Наверх