3. за знайденими l, k обчислити нові значення елементів таблиці за формулами
4.
(12)
,
де та перейти до виконання операції (1) з новими значеннями всіх xij = x'ij.
Перетворення (12) замінює вектор коефіцієнтів Xk = (x1k, …, xmk) на одиничний вектор Xk з xlk = 1. В силу монотонного збільшення x0 повернення до вже пройденого плану неможливе, а із скінченності кількості опорних планів випливає скінченність алгоритму.
Початковий опорний план з одиничним базисом можна отримати, розв'язавши описаним алгоритмом допоміжну задачу
,
при обмеженнях
;
,
яка містить одиничний базис, який складається із векторів An+1, …, An+m. Цим векторам відповідають штучні змінні із значеннями , i = 1, …, m. Якщо в оптимальному розв'язку цієї задачі
, вихідна задача не має розв'язку. Якщо ж
та задача невироджена, оптимальний базис складається лише тільки із векторів вихідної задачі, які за формулами (12) перетворені в одиничну матрицю. Якщо задача має невироджені плани, значення z0 може не збільшуватись на ряді ітерацій. Це відбувається через те, що значення відповідних
дорівнює нулю та визначається неоднозначно. В таких випадках монотонність методу порушується і може трапитись зациклювання, тобто, повернення до вже пройденого базису. Невелика зміна вектора обмежень задачі, яка полягає в заміні величин bi на bi + εi, де εi достатньо малі, при вдалому виборі εi не змінюють множину векторів оптимального опорного плану вихідної задачі і робить її невиродженою.
Описаний вище алгоритм називається першим (або прямим) алгоритмом симплекс-методу. Також відомий другий алгоритм (алгоритм із оберненою матрицею). В ньому перетворюється лише матриця A-1, обернена до базисної матриці.
3. Прикладний розділ
3.1 Вирішення задачі лінійного програмування симплекс-методом
Для розробки математичної моделі задачі позначимо:
x1 – кількість продукту А;
x2 – кількість продукту В;
Цільова функція буде мати вид:
Z=x1+2x2¦mах
Система обмежень:
3 x1+3 x2 <= 15 2 x1+6 x2 <= 18 4 x1<= 16 x1+2x2 <= 8 Xj>=0, j=1..2
Зведення задачі до канонічного виду: Zmax = x1+2x2 при умовах:
3x1+3x2+x3 = 15 2x1+6x2+x4 = 18 4x1+x5 = 16 x1+2x2+x6 = 8 Xj>=0, j=1..6
Таблиця 5.
Базис | С | План | 1 | 2 | 0 | 0 | 0 | 0 |
X3 | 0 | 15 | 3 | 3 | 1 | 0 | 0 | 0 |
X4 | 0 | 18 | 2 | 6 | 0 | 1 | 0 | 0 |
X5 | 0 | 16 | 4 | 0 | 0 | 0 | 1 | 0 |
X6 | 0 | 8 | 1 | 2 | 0 | 0 | 0 | 1 |
Zj-Cj | 0 | -1 | -2 | 0 | 0 | 0 | 0 |
Таблиця 6.
Базис | С | План | 1 | 2 | 0 | 0 | 0 | 0 |
X3 | 0 | 6 | 2 | 0 | 1 | -0,5 | 0 | 0 |
X2 | 2 | 3 | 40238 | 1 | 0 | 40330 | 0 | 0 |
X5 | 0 | 16 | 4 | 0 | 0 | 0 | 1 | 0 |
X6 | 0 | 2 | 40238 | 0 | 0 | -0,3333 | 0 | 1 |
Zj-Cj | 6 | -0,3333 | 0 | 0 | 40238 | 0 | 0 |
Таблиця 7.
Базис | С | План | 1 | 2 | 0 | 0 | 0 | 0 |
X1 | 1 | 3 | 1 | 0 | 40210 | -0,25 | 0 | 0 |
X2 | 2 | 2 | 0 | 1 | -0,1667 | 40269 | 0 | 0 |
X5 | 0 | 4 | 0 | 0 | -2 | 1 | 1 | 0 |
X6 | 0 | 1 | 0 | 0 | -0,1667 | -0,25 | 0 | 1 |
Zj-Cj | 7 | 0 | 0 | 40330 | 40269 | 0 | 0 |
Відповідь: Zmax =7, Xопт =(3 ; 2 ; 0 ; 0 ; 4 ; 1).
Це свідчить про те, що максимальний прибуток підприємства буде дорівнювати 7 грн., а виробництво продукції А і В складає відповідно 3 і 2 одиниці.
... програмування та її економіко – математичної моделі, опис функцій і команд у вирішенні задач лінійного програмування засобами Exel, а також рішення конкретної задачі за допомогою ПК. 1. Побудова економіко–математичної моделі Загальна модель задачі математичного програмування має такий вигляд: У структурі моделі (1.1) можна виділити 3 елементи: 1) Набір керованих змінних x1, x2, ... x ...
... і (усі сj’ ≥0), але не задовільняє критерії допуску (не всі ві ≥0). Варіант симплекс метода, який приміняється для рішення таких задач, називається двоїстим симплекс методом. За його допомоги рішаються задачі лінійного програмування виду: (4.3.1) де система обмежень має такий вигляд і всі приведені коефіцієнти цільової функції сj’ ≥0, і=1,n. При цьому умова ві ≥0, ...
2х1+5х2 + 15х3+ 10х4 досягає максимуму при системі обмежень: Розв'язуємо задачу лінійного програмування симплексним методом. Введемо балансні змінні х5 ≥ 0, х6≥ 0, х7≥ 0. Їх величина поки що невідома, але така, що перетворює відповідну нерівність у точну рівність. Після цього, задача лінійного програмування набуде вигляду: ∫ = 12х1+5х2 + 15х3+ 10х4 → max при ...
... – відпускна ціна i-го заводу j-й продукції; - закупівельна ціна i-го заводу j-й продукції, - шуканий обсяг закупівель на i-м заводі j-й продукції. 2.5 Перевірка моделі оптимізації на контрольному прикладі В цьому підрозділі на прикладі підприємства ТОВ "Гермес-Груп" розрахуємо модель (2.4.5) за допомогою електроних таблиць MSEcxel. Цільова функція має вигляд: де - об’єм закупівлі; ...
0 комментариев