1.1.2 Перечень звеньев механизма

Звенья механизма связаны кинематическими парами:

1-2 – кинематическая пара 5-го класса, вращательная;

2-3 – кинематическая пара 5-го класса, вращательная;

3-4 – кинематическая пара 5-го класса, вращательная;

4-1 – кинематическая пара 5-го класса, вращательная;

5-1 – кинематическая пара 5-го класса, вращательная;

5-3 – кинематическая пара 5-го класса, вращательная;

4-5 – кинематическая пара 5-го класса, поступательная

Кинематические пары 4-го класса отсутствуют.

1.1.3 Определение степени подвижности механизма

Степень подвижности данного механизма определим по формуле Чебышева:

 , (1.1)

где n – число подвижных звеньев механизма;

P5 – число пар 5 класса;

P4 – число пар 4 класса;

n=5; p5=7; p4=0.

Так как степень подвижности механизма равна 1, то для работы данного механизма необходимо одно ведущее звено.

1.2 Динамический анализ механизма

1.2.1 построение плана скоростей точек и звеньев механизма

Для определения скоростей точек и звеньев механизма применяем метод планов. Построение плана скоростей начинаем с ведущего звена механизма.

Посчитаем угловую скорость ведущего звена по формуле:

, (1.2)

n – частота вращения ведущего звена;

= 21 с-1.

Поскольку известно, что его угловая скорость wОА – величина постоянная, то линейная скорость точки А равна:

VА=w11О1А=21×0,025=0,54 м/с, (1.3)

где lо – длина звена О1А в метрах;

Находим скорость точки А на плане скоростей. Направление вектора VОА перпендикулярно звену и направлен вдоль wо1А.

Из произвольно выбранной точки РV (полюс) откладываем вектор произвольной длины, численно равный вектору скорости VА. Определяем масштабный коэффициент скорости:

,  (1.4)

где VА – истинная скорость точки А, м/с;

рv×а– длина вектора на плане, мм.

Для определения скорости точки В воспользуемся условием принадлежности точки В звену АВ. Тогда можно записать следующее уравнение:


, (1.5)

где VА– известно и по величине, и по направлению;

V – известно лишь то, что линия действия этого вектора перпендикулярна звену АВ.

Эту прямую проведем на плане скоростей через точку а. В полюсе ставим точку В. Прямая будет параллельна оси АВ. Тогда:

 (1.6)

Скорость VВО2 направлена вдоль оси ВО2. На пересечении ВО2 и АВ будет находится точка В.

Численно скорость VВ равна:

мм/с (1.7)

Поскольку точка Е принадлежит этому звену ВО2, то для векторов скоростей справедлива запись:

 (1.9)

где lBО2 и lBE – длины соответствующих звеньев.

На плане скоростей точка Е находится на отрезке bо2 и делит его в соответствии.

Длина вектора, который соединяет полюс с точкой Е, отвечает вектор скорости VЕ, численное значение которой равно:


мм/с (1.10)

Определяем скорость точки F, по формуле:

(1.11)

(1.12)

Вектором скорости точки D будет результатом общего решения векторных уравнений. В первом уравнении первое слагаемое известно по величине и по направлению.

Абсолютное значение скорости точки A, С, Е, F сведем в таблицу 1.1.

Определяем скорости центров масс по формуле :

(1.13)

Значения скоростей центров масс занесем в таблицу 1.2.

Определение угловых скоростей звеньев механизма

Полученный план скоростей позволяет не только определить скорости всех точек механизма, а также величину и направление всех скоростей звеньев. Все линии плана, исходящие из точки , представляют собой абсолютные скорости точек. Периферийные линии – относительные скорости.

Определим угловую скорость звена АВ:

 (1.14)

где V – скорость движения точки A, относительно точки В.

Определим угловую скорость звена ВО2:

(1.15)

Определим угловую скорость звена ED:

(1.16)

Угловые скорости сведем в таблицу 1.1

Таблица 1.1 – Скорости точек и звеньев механизма

VА

VВ

VE

VD

w2

w3

w4

мм/с мм/с мм/с мм/с Рад/с Рад/с Рад/с
0.54 0.3 0.21 0.12 5.25 1.75 5.16

Vs1

Vs2

Vs3

Vs4

Vs5

- -
мм/с мм/с мм/с мм/с мм/с - -
0.12 0.22 0.25 0.13 0.12 - -

Масштабный коэффициент плана скоростей


Информация о работе «Анализ нагруженности плоского рычажного механизма»
Раздел: Промышленность, производство
Количество знаков с пробелами: 15733
Количество таблиц: 7
Количество изображений: 1

Похожие работы

Скачать
16884
9
0

... длину вектора и переведем ее обратно:  = 79 мм = 2370 Н 2. ПРОЕКТНЫЙ РАСЧЕТ ЗВЕНЬЕВ МЕХАНИЗМА НА ПРОЧНОСТЬ   2.1 Выбор расчетной схемы В результате динамического анализа плоского рычажного механизма были определены внешние силы, которые действуют на каждое звено и кинематическую пару. Такими внешними силами являются силы инерции , моменты инерции  и реакции в кинематических парах R. Под ...

Скачать
31016
5
2

... напряжений; 4)   определить размеры детали и округлить их до ближайших стандартных, согласно которым будет производится подбор сечений. 2.1 Выбор расчетной схемы В результате динамического анализа плоского рычажного механизма были определены внешние силы, которые действуют на каждое звено и кинематическую пару. Проектный расчет на прочность будем производить для группы Ассура 2-4 данного ...

Скачать
17497
10
2

... 74 R05 24.4 0,005 G4 14,7 Fi4 7.02 R04 7.6 G5 24,5 Fi5 8.125 Fур 0,197 2          ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое звено и кинематическую пару. Этими ...

Скачать
17940
3
0

... H 14 23,4 22 R, H 14 24,2 11,8 1 22,2 2. Расчет элементов кинематических пар на прочность. 2.1. Определение внешних сил, действующих на звенья. В результате динамического анализа плоского рычажного механизма определены внешние силы, действующие на звенья и кинематические пары. Такими внешними усилиями являются силы инерции F , моменты инерции M , а также реакции ...

0 комментариев


Наверх