4.2 Другие методы трехмерного отображения

Голография широко используется для трехмерного отображения серии двумерных изображений, полученных обычным образом.

Излагаемая тема требует детального анализа этого метода, однако в нашем распоряжении имеется несколько коротких обзоров [1.44. 45]. Редмен снова был среди пионеров, решавших эту проблему как для изображений, получаемых с помощью электронного микроскопа [1.46], так и для рентгеновских изображений [1.47]. Вместо того чтобы повторять здесь указанные обзоры, мы рассмотрим достаточно подробно один метод трехмерного отображения двумерных изображений. Предшествующие достижения подробно описаны в указанных обзорах.

Метод трехмерного отображения, который мы хотим исследовать, пригоден, в частности, для отображения всего тела и, следовательно, представляет интерес для биологов, медиков, ортопедов, нейрологов и т.д.

Упомянутый нами метод основан на использовании мультиплексных цилиндрических голограмм. Голограмма записывается в два полностью автоматизированных этапа по схеме, которая была применена Кроссом [1.48]. На первом этапе получают серию фотографий объекта с разных ракурсов таким образом, что объект находится более или менее точно в центре воображаемого круга, с границ которого и производится фотографирование. При этом либо объект помещается на вращающемся столе и (поворачивается перед неподвижным наблюдателем, либо вокруг объекта перемещается фотоаппарат. Угловой шаг между фотографиями должен быть небольшим по причинам, которые поясним позднее. Для многих целей достаточно иметь одну фотографию на каждый градус изменения ракурса. Оказывается, что для многих биологических применений требование к качеству изображения может быть весьма умеренным, так что для реализации имеющейся возможности может быть использован фиксированный круг, образованный, например, 360 равномерно распределенными недорогими фотоаппаратами. Второй этап состоит в мультиплицировании полученных фотографий на цилиндрической голограмме. Обычно вытянутая по вертикали голограмма — полоска шириной в 1° освещается лазерным светом, прошедшим через рассеиватель (если используется одно фотографическое разделение). На некотором расстоянии вдали находится плоскость голограммы. Плоскость голограммы маскируется вертикальной щелью шириной 2рr/N, где r — радиус цилиндрической голограммы, которая будет использоваться (~25 см), a N— число мультиплицируемых изображений (360 в использованном нами примере). Опорный пучок формируется точечным источником, расположенным выше транспаранта с изображением объекта. В результате N голограмм оказываются последовательно записанными на ленте пленки длиной 2рr. После проявления (и обычно отбеливания) голограмма сворачивается в цилиндр, чтобы получить цилиндрическую голограмму. Для наблюдения изображения мы освещаем голограмму сверху с помощью точечного источника, а чтобы видеть объект под различными ракурсами, мы либо обходим вокруг голограммы, либо вращаем голограмму. Наблюдаемый объект, который кажется совершенно реальным и трехмерным, оказывается как бы плавающим в центре цилиндра. Кросс [1.48] был также первым, кто предложил интересное и полезное изменение этой схемы. Кроме изменения ракурса па объект между фотографиями он изменяет также и сам объект. Таким образом, стало возможным наблюдать такие действия, как улыбка, прощальный жест рукой, воздушный поцелуй и т. д., если они были сфотографированы. Движение изображения видно тогда, когда вращается цилиндр или когда наблюдатель вращается вокруг него. Можно снимать фильм непрерывно и таким образом зарегистрировать события произвольной продолжительности, а затем их воспроизвести в виде трехмерного изображения.


5. Извлечение данных об объекте

Когерентная оптика может быть использована для извлечения данных о биологических объектах или для облегчения восприятия некоторых характерных черт объекта. При этом она выполняет функцию, которая не является просто формированием изображения и может даже совсем не включать его.

5.1 Измерение геометрических величин

Измерение биологических объектов в трех измерениях стало возможным совсем недавно по двум основным причинам. Во-первых, вплоть до настоящего времени задача обработки биологических данных превосходила возможности большинства ЭВМ и систем памяти. Во-вторых, сами методы измерений были очень несовершенными. Измерения с помощью линеек не обеспечивали адекватного описания сложных объектов. Электронная вычислительная техника разрешила первую проблему, в то время как когерентная оптика решает вторую.

Для очень точных измерений геометрических характеристик объекта с одного ракурса может быть использован метод Гара с сотр. [1.11], описанный ранее как точный оптический метод измерений. Упатниекс с сотр. [1.49] предложили метод для исследования объектов со многих ракурсов, который является обратным только что описанному методу синтеза цилиндрических голограмм Кросса [1.48]. Упатниекс использует ставший теперь обычным метод записи цилиндрических голограмм непосредственно в когерентном свете [1.50, 51]. При записи голограммы живого объекта необходимо использовать короткий импульс лазерного света, достаточный для того, чтобы «заморозить» движение объекта в пределах долей длины волны света с длиной когерентности, достаточной для записи всего объекта по глубине, и с интенсивностью, достаточной для экспонирования низкочувствительных голографических эмульсий. В настоящее время такие лазеры имеются в продаже [1.52]. В своем методе Упатниекс сначала «развертывает» цилиндр и затем одновременно освещает срез, чтобы получить точные двумерные изображения с любого ракурса, который он выбирает.

Классическим оптическим методом извлечения трехмерных данных об объекте является стереоскопический метод. Было затрачено много усилий на то, чтобы использовать голографию для решения задачи извлечения количественных данных из стереопар. Эти исследования продемонстрировали большую простоту и надежность голографии по сравнению с классическими методами, а также и новые возможности, такую, например, как наложение трехмерных решеток на стереоизображение.


Информация о работе «Анализ и моделирование методов когерентной оптики в медицине и биологии»
Раздел: Физика
Количество знаков с пробелами: 105404
Количество таблиц: 0
Количество изображений: 19

Похожие работы

Скачать
93910
0
2

... матрице, имеющей частично историческую и социокультурную обус­ловленность. ГЛАВА 3 Логика и математика как связующее звено между философией и наукой   Философский стиль мышления современного естествоиспытателя может быть представлен на основе идей Дж. Смарта и В. Куайна [1] в виде сферы взаимодействия классических и современных философских идей и теоретического естествознания в ...

Скачать
766403
1
0

... философии - особенно с методо­логических позиций материалистического понимания исто­рии и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки XX в. фактически - особенно в годы «триумфального шествия» ло­гического позитивизма (а у него действительно были немалые успехи) - научное знание исследовалось без учета его ...

Скачать
117222
0
10

... , то необходимость в дополнительной линии передачи вообще отпадает при передаче энергии на сотни километров, поскольку вся излучаемая энергия может быть перехвачена приемным устройством с апертурой приемлемых размеров. В диапазоне субмиллиметровых волн отношение допустимых размеров апертур к длине волны заметно уменьшается, тем не менее в ряде случаев подобные квазиоптические линии передачи могут ...

Скачать
28619
0
0

... школа, 1988. 10.  Артюхов В.Г., Ковалева Т.А., Шмелев В.П. Биофизика. Воронеж: Воронежский гос. ун-т 1994. 11.  Антонов В.Ф. Биофизика. VI.: Арктос-Викапресс, 2000. 12.  Дополнительная 13.  Механика и биомеханика 14.  Никитин E. VI. Теоретическая механика. VI.: Наука. 1968. Александер Р. Биомеханика. VI.: Мир. 1970. 15.  Журавлева А.И., Iраевская И.Д. Спортивная медицина и лечебная ...

0 комментариев


Наверх