1.3 Формирование двумерного изображения
Несмотря на то, что не существует объектов — биологических или каких-либо других, имеющих строго два измерения, имеются реальные преимущества для записи двумерных изображений в биологии и медицине, так же как и реальные преимущества использования голографии для этих целей. Рассмотрим сначала применения, а потом использование голографии в них.
Существуют две категории интересующих нас двумерных изображений: регистрация символов и изображения объектов. К символическим регистрациям относят диаграммы, графики, печатные страницы и др. Проблемой для биомедицинского исследования здесь является объем информации. Необходим дешевый, компактный, легко доступный, легко копируемый, нечувствительный к повреждениям способ храпения, позволяющий лучшее использование, хранение и обмен необработанных данных. Двумерные изображения обычны, так как они являются самыми легкими для записи и, как правило, самыми простыми для интерпретации. Требования к ним идентичны требованиям к хранению символических изображений плюс дополнительное требование, чтобы большое число градаций было использовано в тоновых изображениях. Так, в случае формирования двумерного изображения голографию следует рассматривать не как прямое средство записи изображения, а как средство архивного хранения изображений, записанных другими способами (например, фотографическим, компьютерным построителем, печатанием па пишущей машинке). Способность легко и просто записывать и воспроизводить данные, низкая стоимость и высокая плотность и нечувствительность к потерям вследствие дефектов должны увеличить полезность всех предпринимаемых сегодня исследовательских усилий.
Голография имеет некоторые ярко выраженные преимущества как метод хранения. Рассмотрим Фурье-голограммы, записанные в какой-либо легкодоступной среде, например на фотографической пленке. Много голограмм полных страниц с данными хранятся рядом друг с другом. Преимущества этого очевидны. Во-первых, проблема фокусировки при записи (очень жесткая при микрофильмировании) просто-напросто исчезает. Так как записан волновой фронт (а не просто изображение), голограмма не может быть не в фокусе.
Во-вторых, проблема фокусировки при воспроизведении (опять же сложная при воспроизведении микрофильма) фактически отсутствует, так как голограмма настолько мала, что каждая деталь проектируется с малым относительным отверстием (и, следовательно, с очень большой глубиной резкости). В-третьих, оборудование при воспроизведении—простое и недорогое, включая Не—Ne-лазер для освещения каждой голограммы, механическую каретку для перемещения пленки так, чтобы выбранная голограмма попадала в пучок, и проекционный экран. В-четвертых, копирование — простое, некритичное и дешевое. В-пятых, запись компактна. Читаемый вариант этой страницы может быть записан на голограмме диаметром 2—3 мм. В-шестых, запись является в некотором смысле неуязвимой к повреждениям и пыли. Информация записана в распределенной форме, так что затемненная часть голограммы приводит лишь к малозаметному ухудшению всего изображения, но она не уничтожает полостью ни одной его детали. Более того, царапины, не параллельные интерференционным полосам голограммы, не влияют на изображение. В-[1.15] можно ознакомиться с деталями этого метода.
2. Неоптические методы формирования изображений
Поскольку отображение тканей в неоптическом и оптическом излучениях различно, целесообразно формировать неоптические изображения. Необходимо, чтобы выходное изображение было видимым, хотя входная информация является невидимой. Когерентная оптика играет важную роль в формировании неоптических изображений. Во-первых, она дает полезные аналогии (например, оптическую голографию), которые без труда распространяются на неоптические области. Во-вторых, она является средством получения требуемых видимых изображений.
2.1 Акустическая голография
Акустическая голография дает хорошие примеры обеих операций в неоптической области, получаемых, но аналогии с когерентной оптикой и использованием когерентного оптического восстановления. Мы подведем итоги некоторых результатов. Для читателей, интересующихся вопросом более детально, существует прекрасная монография [1.16]. Наша цель состоит в том, чтобы подчеркнуть скорее результаты, которые можно получить, а не методы их достижения. Акустические голограммы часто формируются и считываются одновременно. Двумя распространенными голографическими средами являются поверхности жидкости (рябь на поверхности) [1.17] и жидкие кристаллы [1.18]. Также можно использовать явление дифракции Брэгга [1.19]. Во всех этих случаях восстановление в когерентном свете обеспечивает получение изображения объекта в реальном времени в виде, как он «освещается» звуком. Для наблюдения с задержкой (а не в реальном времени) существует также большой выбор регистрирующих сред [1.16].
Изображения содержат информацию об объеме объекта, но эту информацию не так легко воспринять, как глубину сцены в «обычной оптической голографии». Причина этого ясна, и применение когерентной оптики к вопросам биомедицины является важной иллюстрацией более общей проблемы. В случае обычной оптической френелевской голограммы мы наблюдаем сцену сквозь голограмму, линейные размеры которой могут быть 10—20 см. Стандартная пленка записывает 2*104 лин/см, или около 2*105—4*105 интерференционных полос в голограмме в видимом свете.
Таким образом, вся голограмма может содержать около 1011 разрешимых пространственных элементов или элементов изображения. На рис. 2.1. показано, как можно наблюдать объект через такую оптическую голограмму. Часть всей голограммы, образующая изображение, наблюдаемое глазом, очень мала, но число содержащихся элементов изображения может все еще равняться 106 или больше в зависимости от того, где расположены глаза наблюдателя. Типичные акустические голограммы далеко не содержат 1011 элементов изображения. В результате этого их нельзя использовать как оптические голограммы, которые были только что описаны. Вместо того чтобы наблюдать трехмерную сцену в большое окно, мы наблюдаем ее в замочную скважину! Без изменений перспективы, имеющих место при более широкой апертуре, мы теряем ощущение объема. Мы не можем видеть трехмерную картину в замочную скважину. Это положение иллюстрируется па рис. 2.2. Итак, мы должны использовать всю голограмму для создания изображения. Исчезает параллакс, но зато остается глубина фокусировки при формировании изображения. Поэтому можно осуществлять фокусировку на последовательные плоскости с обычной глубиной фокусировки, которая имеет место в случае получения обычного акустического изображения. Это значит, что голограмма с апертурой А, рассматривающая объект на расстоянии d при длине акустической волны л, имеет разрешение по глубине примерно . Часто различные «плоскости» фокусируются последовательно на видикон для удобства телевизионного считывания. Общей проблемой, показанной здесь, является относительная малочисленность данных, обычно встречающаяся в биомедицинских изображениях. Таким образом, если бы были доступны удобные и быстрые матрицы преобразователей в 103*103 элементов, то они могли бы заменить непосредственно формируемые голограммы, а изображения могли бы формироваться не при помощи дифракции, а с помощью машинного преобразования Френеля. В акустической голографии когерентная оптика используется не вследствие своих сильных качеств (высокая скорость обработки данных), а просто потому, что она является (в настоящее время) более дешевой и удобной.
Рис. 2.1. Наблюдение изображения с обычной оптической голограммы
Рис. 2.2. Наблюдение изображения с голограммы небольшого размера, например, акустической.
Такое удачное стечение обстоятельств действительно имеет место в случае с когерентной оптикой, но оно не приводит к стабильному преимуществу. Цифровые матричные преобразователи и цифровые процессоры станут более дешевыми и более быстрыми. Для того чтобы сохранять свое место, средства когерентной оптики должны также совершенствоваться.
Получение акустической голограммы — сложная задача, выходящая за рамки данной главы (более детальное рассмотрение см. в [1.16]), но Мы можем наметить те моменты, которые характерны для выбранного метода при любых применениях. Первый момент состоит в решении, должна ли голограмма быть получена в реальном времени. Голографирование в реальном времени является действительной необходимостью для некоторых объектов (например, плавающая рыба, работающие мышцы). Важно помнить, что объект должен быть, не только фотографически неподвижен (движение меньше, чем разрешение), но также и голографическн неподвижен (движение меньше чем четверть длины волны). Таким образом, хотя использование акустических голограмм, снимаемых в стационарных условиях, широко предлагалось для промышленного контроля, биомеднцииская акустическая голография почти исключительно связана с методами, использующими реальное время. Второй момент заключается в методе освещения объекта.
Так как внешние поверхности объектов легко записываются с помощью оптической голографии, акустическую голографию редко применяют для регистрации звука, рассеянного поверхностью. Скорее, ее используют почти исключительно для (наблюдения) видения сквозь оптически непрозрачные объекты. Таким образом, объект должен просвечиваться, но только звуковыми волнами. Для того чтобы связать эффективно ультразвук с объектом, а затем с записывающей плоскостью, все устройство и объект обычно погружаются в жидкость (как правило, в воду).
Вследствие большой величины относительного отверстия нетрудно изготовить высококачественные акустические линзы; такие линзы используют часто для перенесения изображения объекта ближе к плоскости голограммы, что обеспечивает запись голограммы с большой величиной относительного отверстия для достаточно удаленных объектов. Следующим шагом является введение опорного пучка. Преобразователи и управляющая электроника настолько хороши, а частоты так низки (по сравнению с оптическими частотами), что можно получать объектный и опорный пучки от разных преобразователей. Мы выбираем такую схему, чтобы она давала интерференционные полосы, разрешимые регистрирующей средой (при этом осуществляется запись максимального количества информации).
Преимущества формирования акустических изображений перед неакустическими в биомедицинских применениях очевидны и просты. При получении изображений внутренних органов ультразвук гораздо более безопасен, чем рентгеновские лучи, хотя требования к технике безопасности все еще активно обсуждаются. Однако даже ультразвук не безвреден, и, по-видимому, оценки допустимой дозы ежегодно пересматриваются в меньшую сторону. Таким образом, чувствительность различных методов имеет очень большое значение. Ограничения чувствительности могут возникать из ультразвуковых эффектов или из эффектов записи или восстановления. Так, например, квантовый шум может ограничивать чувствительность акустических методов, используемых в реальном масштабе времени, которые предполагают восстановление лазерным пучком. С помощью ультразвука легко распознаются мягкие ткани, являющиеся почти одинаково прозрачными для рентгеновских лучей.
С другой стороны, преимущества акустической голографии перед наиболее развитыми неголографическими акустическими методами формирования изображений уже не вполне очевидны. Даже разрешение по глубине доступно неголографическим способам [1.20]. Высокое поперечное разрешение легко осуществимо с помощью сканирующих преобразователей.
Рис. 2.3. Коммерческая ультразвуковая голографическая установка (С разрешения фирмы Holosonics, Inc.).
Таким образом, имеется иерархия несомненных фактов. Наиболее определенным фактом является полезность формирования изображения с помощью ультразвуковых волн в биомедицинских исследованиях. Менее очевидно, следует ли это изображение формировать голографическим или неголографическим способом.
Наименее определенно, по-прежнему ли этап формирования видимого изображения в акустической голографии будет включать использование когерентного света, даже если выбрана акустическая голография. Когерентные оптические методы наиболее полезны там, где затруднена обработка на вычислительной машине: в формировании изображений в реальном времени.
Визуализация акустических трехмерных изображений позволяет наблюдать объекты, интересные в биомедицинском отношении в реальном времени в выбранных по глубине плоскостях. Динамические изображения всегда гораздо лучше (косметически), чем отдельные кадры, как будет показано ниже, так как движение стремится размыть «когерентные эффекты». На рис. 2.3. показана промышленная система ультразвуковой голографии, основанная на стоячих рельефных волнах на поверхности жидкости, получающихся в результате интерференции между акустическими опорным и объектным пучками. Облучение этой поверхности лазерным пучком создает достоверное томографическое изображение объекта. Так, видикон может сканировать изображение с тем, чтобы наблюдать различные сечения объекта. Одним из наиболее полезных применений является визуализация объектов с переменной и неизвестной глубиной.
На рис. 2.4 показаны кровеносные сосуды человека в конечностях (глубоко лежащие внутренние структуры взрослых людей оказываются слишком сложными объектами для получения изображений с помощью существующего оборудования). Эти картины были сняты с телевизионного устройства только что описанной системы, когда конечность помещали в просвечиваемый ультразвуком резервуар с водой. Существует много потенциальных применений акустической голографии.
Рис. 2.4. Изображение, полученное с помощью ультразвуковой голографической установки, приведенной на рис. 2.3 (С разрешения фирмы Holosonics, Inc.). с — раэдноенный кровеносный сосуд в верхней части рукн: б — глубокий кровеносный сосуд в нижней части ноги вблизи большой берцовой кости.
Рис. 2.5. Псевдоскопическое изображение тропической рыбки, полученное в реальном времени Вейдом и Лэндри (Калифорнийский университет, Санта-Барбара) в 1968 г.
Непрозрачность кристаллов холестерина указывает па возможность наблюдения холестериновых образований в сосудах. Еще одной когерентной оптической системой, работающей в реальном времени, является формирование изображений на основе дифракции Брэгга. В такой системе объект освещается одночастотным преобразователем, расположенным на дне резервуара с жидкостью. Трехмерное звуковое поле, образованное в резервуаре, характеризует трехмерную структуру объекта. Освещение такой трехмерной звуковой картины лазерным пучком приводит к дифракции света. Дифракция на трехмерных структурах называется дифракцией Брэгга. Анализ продифрагированного света с помощью линзы создает трехмерное оптическое изображение объекта, каким он наблюдается на выбранной длине акустической волны. Так как длины оптической и звуковой волн не равны, различны поперечное и продольное увеличения, т. е. оптическое изображение до некоторой степени искажено. На рис. 2.5 приведено одно из первых изображений биологического объекта, полученного с помощью дифракции Брэгга. Спустя семь лет после получения этого изображения качество и разрешение изображений, получаемых по этому методу, были значительно улучшены, но, не было снято никаких изображений биологического характера.
... матрице, имеющей частично историческую и социокультурную обусловленность. ГЛАВА 3 Логика и математика как связующее звено между философией и наукой Философский стиль мышления современного естествоиспытателя может быть представлен на основе идей Дж. Смарта и В. Куайна [1] в виде сферы взаимодействия классических и современных философских идей и теоретического естествознания в ...
... философии - особенно с методологических позиций материалистического понимания истории и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки XX в. фактически - особенно в годы «триумфального шествия» логического позитивизма (а у него действительно были немалые успехи) - научное знание исследовалось без учета его ...
... , то необходимость в дополнительной линии передачи вообще отпадает при передаче энергии на сотни километров, поскольку вся излучаемая энергия может быть перехвачена приемным устройством с апертурой приемлемых размеров. В диапазоне субмиллиметровых волн отношение допустимых размеров апертур к длине волны заметно уменьшается, тем не менее в ряде случаев подобные квазиоптические линии передачи могут ...
... школа, 1988. 10. Артюхов В.Г., Ковалева Т.А., Шмелев В.П. Биофизика. Воронеж: Воронежский гос. ун-т 1994. 11. Антонов В.Ф. Биофизика. VI.: Арктос-Викапресс, 2000. 12. Дополнительная 13. Механика и биомеханика 14. Никитин E. VI. Теоретическая механика. VI.: Наука. 1968. Александер Р. Биомеханика. VI.: Мир. 1970. 15. Журавлева А.И., Iраевская И.Д. Спортивная медицина и лечебная ...
0 комментариев