Базисные сплайны

17728
знаков
0
таблиц
6
изображений
Введение

Большинство численных методов решения задач математического анализа так или иначе связано с аппроксимацией функций. Это и собственно задачи приближения функций (интерполяция, сглаживание, наилучшие приближения) и задачи, в которых аппроксимация присутствует как промежуточный этап исследования (численное дифференцирование и интегрирование, численное решение дифференциальных и интегральных уравнений).

Типичной задачей приближения является задача интерполяции: по заданной таблице чисел , восстановить функцию  с той или иной точностью на отрезке [а, b] действительной оси. Классический метод ее решения состоит в построении интерполяционного многочлена Лагранжа, определяемого равенством

 

Описание: image6

Хотя согласно теореме Вейерштрасса всякая непрерывная функция  на отрезке  может быть как угодно хорошо приближена многочленами, практические возможности применения многочленов Лагранжа ограничены. Прежде всего, используя подобный аппарат, мы должны быть уверены, что, выбрав достаточно большое число узлов интерполяции, получим хорошее приближение интерполируемой функции. Однако, как показывает ряд простых примеров, это часто нельзя гарантировать.

С. Н. Бернштейном (1916 г.) было установлено, что последовательность интерполяционных многочленов Лагранжа построенных для непрерывной функциина отрезке [—1, 1] по равноотстоящим узлам , с возрастанием  не стремится к . Еще более любопытен другой пример, восходящий к Рунге (1901 г.) и состоящий в том, что указанный интерполяционный процесс не сходится на [—1, 1] даже для гладкой сколь угодно раз дифференцируемой функции (рис. 0.1). В обоих случаях

Иногда эти трудности удается преодолеть путем специального выбора узлов интерполяции или за счет перехода к каким-либо обобщенным многочленам. Однако такой путь, как правило, весьма усложняет вычисления и к тому же не избавляет нас от второй проблемы — быстрого накопления ошибок округления с ростом степени многочлена. Поэтому на практике для того, чтобы достаточно хорошо приблизить функцию, вместо построения интерполяционного многочлена высокой степени используют интерполяцию кусочными многочленами.

Примером такого рода является кусочно-линейная интерполяция. В общем случае отрезок  точками  разбивается на части и на каждом промежутке , строится свой интерполяционный многочлен. Полученные таким образом многочлены (обычно одной и той же степени) дают интерполяцию функции  на всем отрезке , которая, вообще говоря, не обеспечивает гладкого перехода от одного звена к другому и может быть даже разрывной, если точки  не включаются в число узлов интерполяции. Это допустимо, если не требуется восстанавливать функцию с заданной степенью гладкости. В частности, различные таблицы составляются с таким шагом, чтобы промежуточные значения функции с принятой точностью можно было вычислить с помощью линейной или квадратичной интерполяции. Для гладкого восстановления таблично заданной функции нужно увеличить степень составляющих многочленов, а остающиеся свободными коэффициенты определять из условий гладкого сопряжения многочленов на соседних промежутках. Получающиеся при этом гладкие кусочно-многочленные функции с однородной структурой (составленные из многочленов одной и той же степени) называются сплайн-функциями или просто сплайнами. Простейший и исторически самый старый пример сплайна - ломаная.

Термин сплайн произошел от английского spline, что в переводе означает рейка, стержень — название приспособления, которое применяли чертежники для проведения гладких кривых через заданные точки. Возьмем гибкую стальную линейку, поставим ее на ребро и, закрепив один конец в заданной точке , поместим между опорами, которые располагаются так, чтобы линейка проходила через заданные точки (рис, 0.2).

Согласно закону Бернулли—Эйлера линеаризованное дифференциальное уравнение изогнутой оси линейки имеет вид


 

где  — вторая производная прогиба, — изгибающий момент, изменяющийся линейно от одной точки опоры к другой,  — жесткость. Проинтегрировав это уравнение, получим, что функция , описывающая профиль линейки, является кубическим многочленом между двумя соседними точками опоры и дважды непрерывно дифференцируемой функцией на всем промежутке интегрирования. Для определенности задачи на концах должны быть заданы краевые условия, в частности, при отсутствии внешних нагрузок па линейку .

Функция  представляет собой другой пример (теперь уже гладкого) сплайна. Она относится к интерполяционным кубическим сплайнам, обладающим рядом замечательных свойств, которые и обеспечили им успех в приложениях.

В отличие от интерполяционных многочленов Лагранжа, последовательность интерполяционных кубических сплайнов на равномерной сетке узлов всегда сходится к интерполируемой непрерывной функции, причем сходимость повышается с улучшением дифференциальных свойств функции . Так, для функции  из примера Рунге кубический сплайн на сетке с числом узлов  дает погрешность того же порядка, что и многочлен , но для  она настолько мала, что в масштабах рис. 0.1 не может быть показана (ср. с многочленом ).

Алгоритмы построения кубических сплайнов являются весьма простыми и эффективно реализуются на ЭВМ, причем влияние ошибок округления при вычислениях оказывается незначительным.

Целью данной работы является изучение сплайнов, в частности базисных сплайнов. Также мы составим программу для работы со сплайнами.


§1. Определение сплайнов. Пространство сплайнов

Пусть на отрезке [a, b] задано разбиение  Для целого  через  обозначим множество  раз непрерывно дифференцируемых на  функций, а через— множество кусочно-непрерывных функций с точками разрыва первого рода.

Определение. Функция называется сплайном степени  дефекта  ( — целое число, ) с узлами на сетке , если

а) на каждом отрезке  функция  является многочленом степени , т. е.

 (1)

б) .

Определение сплайна имеет смысл на всей вещественной оси ,если положить  

При этом на полуоси  берется только формула (2), а на полуоси  только формула (1).

Итак, сплайн  имеет непрерывные производные до порядка . Производные сплайна порядка выше , вообще говоря, терпят разрывы в точках . Для определенности будем считать, что функция , непрерывна справа, т. е.

Множество сплайнов, удовлетворяющих определению, обозначим через  Ясно, что этому множеству принадлежат и сплайны степени n дефекта  и сплайны степени  дефекта , если , в том числе многочлены степени не выше . Так как обычные операции сложения элементов из и их умножения на действительные числа не выводят за пределы множества, то оно является линейным множеством или линейным пространством.

Простейшим примером сплайна является единичная функция Хевисайда

с которой естественным образом связана усеченная степенная функция

 

Функции  являются сплайнами соответственно нулевой степени и степени  дефекта 1 с единственным узлом в нулевой точке (рис. 1.1). Мы будем рассматривать также усеченные степенные функции , связанные с точками сетки . При они принадлежат множеству  

Теорема 1.1. Функции

 

 (3)

линейно независимы и образуют базис в пространстве размерности

Доказательство: Предположим противное, т. е. что существуют постоянные , не все равные нулю и такие, что  

Тогда для  имеем  и в силу линейной независимости функций  находим Беря  получаем  и, по той же причине,  Продолжая этот процесс, убеждаемся, что все  Следовательно, функции (3) линейно независимы.

Пусть теперь задан сплайн  на отрезке  он является многочленом степени ,  и может быть записан в виде (1) или (2). При этом, так как первые  производных сплайна непрерывны в точках  т. е.

Покажем, что сплайн , на отрезке может быть представлен в виде

 (4)

Где  

Действительно, преобразуя это выражение при  получаем

 

Это доказывает, что всякий сплайн может быть представлен в виде линейной комбинации функций (3), т. е. эти функции образуют базис в  и представление (4) единственно. Эта формула называется представлением сплайна в виде суммы усеченных степенных функций. Итак, множество является конечномерным пространством размерности

 

§2. Базисные сплайны с конечными носителями

В математическом анализе встречаются конструкции, связанные с финитными функциями, т. е. гладкими функциями, которые определяются на всей действительной оси, но отличны от нуля лишь на некотором конечном интервале (носителе). Ниже мы исследуем финитные сплайны из пространства . В последующем изложении они играют исключительно важную роль.

Расширим сетку , добавив дополнительно точки  (можно положить, например, ).

Возьмем функциюОписание: image67и построим для нее разделенные разности  порядка по значениям аргумента Описание: image68. В результате получаются функции переменной х:

Так как для разделенной разности  порядка от функции  по точкамОписание: image70справедливо равенство

Описание: image71

Если использовать тождество Описание: image72 то можно получить несколько иную форму записи этой функции

Описание: image73

Из определения усеченных степенных функций следует, что функцияОписание: image74является сплайном степени п дефекта 1 на

сетке узловОписание: image75

Лемма 1.1. Справедливо тождество

Описание: image76


Доказательство. ЕслиОписание: image77то разделенная разность функции по точкам может быть вычислена по формуле Лейбница:

Описание: image78

Для разности  порядка путем рассуждений по индукции нетрудно получить

Описание: image79

Представим функциюОписание: image80в виде

Описание: image81Описание: image82

и построим ее разделенную разность  порядка по формуле Лейбница. Получим

Отсюда, если учесть определение сплайновОписание: image84, следует тождество (4).

Лемма 1.2. Сплайны Описание: image85 обладают следующими свойствами:


 

Описание: image86

Доказательство. ФункцияОписание: image87равна нулю при и является многочленом степени n от х при . Поэтому ее разделенные разности  порядка по значениям аргументаОписание: image88тождественно равны нулю при  и Описание: image89т.е. Описание: image90 Внутри интервала

В самом деле, при n = 0 согласно (2) Описание: image91. Пусть, далее, утверждение а) верно при  Тогда при n=l в силу (4) на интервалеОписание: image92 функцияОписание: image93является линейной комбинацией с положительными весами функцийОписание: image94причем по предположению в произвольной точке указанного интервала хотя бы одна из этих функций больше нуля. Следовательно,Описание: image95 для Описание: image96, и утверждение а) установлено.

Докажем утверждение б). Всякую n+1 раз непрерывно дифференцируемую функцию g(t) на промежутке а ≤ t ≤ b можно представить формулой Тейлора с остаточным членом в интегральной форме:

Описание: image97 

Здесь под знаком интеграла вместо обычного сомножителяОписание: image99 стоит усеченная степенная функция, что позволяет заменить переменный верхний предел t постоянной величиной b. Из (7) следует разностное соотношение


Описание: image100 

то, полагая g(x) = xn+1, поручаем

Описание: image101

Поскольку вне интервала (а, b), то это равенство -совпадает с (6) и лемма доказана.

Лемма 1.3. ФункцииОписание: image103являются сплайнами степени п дефекта 1 с конечными носителями минимальной длины.

Доказательство. Предположим, что существует сплайн Описание: image104отличный от нуля на интервале, меньшем, чем Описание: image105Такой интервал, очевидно, не может иметь границей точку, не являющуюся узлом сетки . Поэтому пусть это будет интервал (xi, xi+n).

Возьмем представление сплайна дефекта v = 1 через усеченные степенные функции (1.4). Вследствие того, что при  в этом представленииОписание: image106. Так как при  то ее производные до порядка n — 1 равны нулю в точке xi+n. Имеем

Описание: image108

Последние равенства представляют собой однородную систему линейных уравнений для определения коэффициентов . Ее определитель пропорционален определителю Вандермонда n-ro порядка, который отличен от нуля, и система имеет только нулевое решение. Наконец, из того же условия следует, что . Значит, и лемма доказана.

Теорема 1.2. ФункцииОписание: image109 линейно независимы и образуют базис в пространстве сплайнов Описание: image110

Доказательство. Покажем сначала линейную независимость функцийОписание: image111на всей действительной оси. Предположим противное, т. е. что существуют такие постоянные , не все равные нулю, что

Описание: image112

ВыбираяОписание: image113 получаем, чтоОписание: image114и, значит, . Беря затем Описание: image115 находим, что Описание: image116 и т.д., т.е. Описание: image117 Следовательно, функции Описание: image118линейно независимы на Описание: image119

Предположим теперь, что соотношение (8) выполняется только на [а, b]. Это значит, что на отрезках  обращаются в нули сплайны вида

Описание: image120

Каждый из них отличен от нуля самое большее на интервале Поэтому из предположения при xсогласно доказательству леммы 3 следует, что 0 на интервалах , а значит, и на всей действительной оси. В силу линейной независимости функций Описание: image121наОписание: image122должно быть Описание: image123 и это для всех i = 0, ..,N-1.

Таким образом, функцииОписание: image124линейно независимы, и так как согласно теореме 1.1 размерность пространстваОписание: image125равна n+N, то они образуют базис в этом пространстве. Теорема доказана.

Функции Описание: image126 называются базисными сплайнами с конечными носителями минимальной длины (В-сплайнами). В силу теоремы 1.2 всякий сплайнОписание: image127 может быть единственным образом записан


Описание: image128

где — некоторые постоянные коэффициенты. Эту запись сплайна называют его представлением через В-сплайны.

Из теоремы 1.2 вытекает

Следствие 1.1. Всякий сплайнОписание: image129, принадлежащий Описание: image130, с конечным носителем минимальной длины с точностью до постоянного множителя совпадает с В-сплайном.

Доказательство. Минимальным конечным носителем сплайна является один из интервалов Описание: image131  Согласно (9)

Описание: image133

Так как  для  то, выбирая последовательно , получаем, что . Аналогично,  для  Следовательно,

Замечание. Представление сплайнов через B-сплайпы в виде (9) имеет смысл для конечного отрезка [а, b]. Чтобы получить его для всей вещественней оси, нужно положить  и . Тогда точки  оказываются узлами кратности  и при построении B-сплайнов с номерами  и  нужно учитывать правило для разделенных разностей с кратными узлами. Мы не описываем подробно эти конструкции, ибо все практические задачи, где используются B-сплайны, рассматриваются на конечном отрезке.


§3. Нормализованные базисные сплайны и представление ими многочленов

При практических вычислениях удобнее использовать не сами B-сплайны, а функции, получающиеся из них умножением на постоянные множители:

 (1)

Эти функции называются нормализованными В-сплайнами. Нормирующий множитель равен среднему арифметическому шагов  на отрезке, где B-сплайн отличен от нуля.

Тождество (2.4) для нормализованных 5-сплайнов имеет вид

Описание: image141

С его помощью легко можно построить последовательность сплайнов  Приведем первые четыре функции этой последовательности для случая равноудаленных узлов hi= h.

Будем обозначатьОписание: image142ТочкаОписание: image143 - это середина отрезка-носителя В-сплайна. Тогда имеем


Эти В-сплайны изображены на рис. 1.3, а, б, в, г соответственно.

В § 1 было отмечено, что многочлены Рп(х) степени не выше n являются элементами пространства сплайнов  .Следовательно, они представимы через базисы этих пространств, в частности через базис из В-сплайнов в пространстве . Для вывода формул воспользуемся тождеством (2). После умножения обеих его частей на число и суммирования по индексу i получаем

Описание: image145

Лемма 1.4. Справедливо тождество

Описание: image146 

в предположении


Доказательство. В формуле (4) положим  Тогда получаем

Описание: image149

Подставляя  в (3), находим

Описание: image150

Повторяя это преобразование n раз, получим справа

Описание: image151

Теперь разложим обе части тождества (5) по степеням t. При этом

Здесь  суть символы элементарных симметрических функций от n аргументов степени а. Это многочлены, состоящие из слагаемых. Они имеют вид


Подставляя разложения (6) и (7) в (5) и приравнивая коэффициенты при одинаковых степенях t, находим представления мономов  через нормализованные В-сплайны па отрезке

Описание: image154

В частности, при а = 0 получаем соотношение

Описание: image155

которое для нормализованных 5-сплайпов играет ту же роль, что свойство (2.6) для самих 5-сплайнов.

Полученные формулы (8) решают вопрос о представлении произвольного многочлена п-й степени через нормализованные В-сплайны.


Заключение

В данной работе мы рассмотрели понятие сплайна и основные определения необходимые для работы с ним. Было изучено понятие базисного сплайна или B-сплайна, а так же уделено внимание его форме в виде нормализованного сплайна. Так же была создана программа для интерполяции сплайнов при помощи языка программирования высокого уровня C++.


Список литературы

1.  Вержбицкий В.М. Основы численных методов – М.:Высш. шк., 2002.

2.  Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайн – функций - М.: Наука, 1980. 352 с

3.  Бахвалов Н. С., Жидков Е. П., Кобельков Г. М. Численные методы. Учебное пособие. - 4-е издание – М.- СПб.: Физматлит, Невский диалект, Лаборатория базовых знаний, 2003

4.  Препарата Ф., Шеймос М. Вычислительная геометрия. Введение. - Мир, 1989

5.  Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа - М.: Наука, 1976


Приложение Листинг программы.

#include<conio.h>

#include<iostream>

using namespace std;

double KubichSplain ( int n, double *X, double *Y, double Xp )

{

double *Q, *L, *A, *B, *C, *D, DXp, Yp;

int i, j, k;

Q = new double [n];

L = new double [n];

A = new double [n];

B = new double [n];

C = new double [n];

D = new double [n];

for(i=0;i<n;i++)

if(Xp<=X[i])

{

k=i;

break;

}

Q[1] = (-1) * (X[2]-X[1])/2*(X[1]-X[0] + X[2]-X[1]);

L[1] = (3*(Y[2]-Y[1])/(X[2]-X[1]) - 3*(Y[1]-Y[0])/(X[1]-X[0])) / (2*(X[1]-X[0] + X[2]-X[1]));

C[n-1]=0;

C[0]=0;

for(i=3; i<n; i++)

{

Q[i-1]=(-1) * (X[i]-X[i-1]) / (2*(X[i-1]-X[i-2]+X[i]-X[i-1])+(X[i-1]-X[i-2])*Q[i-2]);

L[i-1]=(3*((Y[i]-Y[i-1])/(X[i]-X[i-1])-(Y[i-1]+Y[i-2])/

(X[i-1]-X[i-2]))-(X[i-1]-X[i-2])*L[i-2])/(2*(X[i-1]-X[i-2]+X[i]-X[i-1])+(X[i-1]-X[i-2])*Q[i-2]);

}

for(i=n-1; i>=2; i--)

C[i-1]=Q[i-1]*C[i]+L[i-1];

A[0]=Y[0];

for(i=1;i<n;i++)

{

A[i]=Y[i];

D[i]=(C[i]-C[i-1])/3.*(X[i]-X[i-1]);

B[i]=(Y[i]-Y[i-1])/(X[i]-X[i-1])+2.*(X[i]-X[i-1])*C[i]/3.+(X[i]-X[i-1])*C[i-1]/3.;

}

DXp=Xp-X[k];

//получение значения интерполирующей функции

Yp = A[k] + B[k]*DXp + C[k]*DXp*DXp + D[k]*DXp*DXp*DXp;

delete []A;

delete []B;

delete []C;

delete []D;

delete []Q;

delete []L;

return Yp;

}

void main ( void )

{

double *X, *Y, Xp;

int n, i;

system("CLS");

cout << "Enter n: ";

cin >> n;

X = new double [n];

Y = new double [n];

for ( i = 0; i < n; i ++ )

{

cout << "X[ " << i+1 << " ] = ";

cin >> X[i];

}

for ( i = 0; i < n; i ++ )

{

cout << "Y( " << X[i] << " ) = ";

cin >> Y[i];

}

cout << "Xp = ";

cin >> Xp;

cout << "Y( " << Xp << " ) = " << KubichSplain ( n, X, Y, Xp )<<"\n";

getch();

delete []X;

delete []Y;

}


Информация о работе «Базисные сплайны»
Раздел: Математика
Количество знаков с пробелами: 17728
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
14439
2
7

... Наличие такой центральной теоремы, а также еще ряда доказанных Стренгом-Фиксом теорем, в частности о существовании функций, удовлетворяющих условиям (2.7), дает алгоритм для построения базисных финитных функций, обладающих необходимыми аппроксимационными свойствами. 3. B-сплайны Шёнберга В вычислительной математике B-сплайном называют сплайн-функцию, имеющую наименьший носитель для заданной ...

Скачать
20513
3
22

... , форми їх запису та формули для розрахунків інтерполяційних задач, рекурентні формули для представлення В-сплайнів 1-го, 2-го, 3-го та вищих порядків. З’ясувати практичність застосування Кубічних В-сплайнів у ВНЗ при розв’язуванні задач інтерполяції. Застосувати на практиці отримані знання. Для досягнення мети були поставлені такі завдання: – знайти і опрацювати літературу із даної теми; – ...

Скачать
67501
0
36

... ів у буферний ЗП контролера клавіатури та дисплея. Але під час виконання роботи був знайдений більш ефективний метод для аналізу пульсової хвилі – вейвлет-аналіз, якому і присвячений наступний розділ. 3. СУТНІСТЬ ВЕЙВЛЕТ-АНАЛІЗУ   Вейвлет-перетвореня сигналів є узагальненням спектрального аналізу, типовий представник якого - класичне перетворення Фур'є. Застосовувані для цієї мети базиси ...

Скачать
69253
1
30

... влияния. Это означает, что любая вершина не влияет на всю поверхность (за исключением очень простых поверхностей). Для кубических поверхностей, которые наиболее часто используются для создания моделей корпусов, каждая вершина влияет в пределах области двух вершин от себя. За пределами этой области вершина не влияет на поверхность (в случае интерполирующих сплайнов изменения, произведённые в носу ...

0 комментариев


Наверх