Интегралы
Основные вопросы лекции: первообразная; неопределенный интеграл, его свойства; таблица интегралов; методы интегрирования: разложение, замена переменной, по частям; интегрирование рациональных функций; интегрирование иррациональностей и выражений, содержащих тригонометрические функции, задачи, приводящие к понятию определенного интеграла; интегральная сумма; понятие определенного интеграла, его свойства; определенный интеграл как функция верхнего предела; формула Ньютона Лейбница; применение определенного интеграла к вычислению площадей плоских фигур; вычисление объемов тел и длин дуг кривых; несобственные интегралы с бесконечными пределами и от неограниченных функций, основные понятия дифференциальных уравнений; задача Коши; дифференциальные уравнения с разделяющимися переменными; однородные дифференциальные уравнения 1-го порядка; линейные дифференциальные уравнения 1-го порядка, дифференциальные уравнения 2-го порядка, допускающие понижение порядка; линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами: однородные и неоднородные.
Функция называется первообразной для функции
на промежутке
, если в любой точке этого промежутка
.
Теорема. Если и
– первообразные для функции
на некотором промежутке
, то найдется такое число
, что будет справедливо равенство
=
+
.
Множество всех первообразных для функции на промежутке
называется неопределенным интегралом от функции
и обозначается
. Таким образом,
=
+
.
Свойства неопределенного интеграла
1. Производная от неопределенного интеграла равна подынтегральной функции, то есть
.
2. Дифференциал неопределенного интеграла равен подынтегральному выражению, то есть
3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, то есть
,
где – произвольное число.
4. Постоянный множитель можно выносить за знак интеграла, то есть
5. Интеграл от алгебраической суммы двух функций равен такой же сумме интегралов от этих функций, то есть
.
Метод замены переменной
,
где – функция, дифференцируемая на рассматриваемом промежутке.
Метод интегрирования по частям
,
где и
– дифференцируемые функции.
Интегрирование рациональных дробей. Простейшими дробями называют дроби вида
и
,
причем квадратный трехчлен не имеет действительных корней.
Рациональную функцию можно разложить в сумму простейших дробей, причем в знаменателе этих дробей могут быть и степени от выражения стоящего в знаменателе.
Для интегралов вида делают замену
, а для интегралов
в общем случае используются подстановки Эйлера.
При интегрировании тригонометрических выражений в общем случае используется замена переменной
, где
.
Талица основных интегралов.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Пусть на отрезке задана функция
. Разобьем отрезок
на
элементарных отрезков точками
. На каждом отрезке
разбиения выберем некоторую точку
и положим
, где
. Сумму вида
(1)
будем называть интегральной суммой для функции .на
. Для избранного разбиения отрезка
на части обозначим через
максимальную из длин отрезков
, где
.
Пусть предел интегральной суммы при стремлении к нулю существует, конечен и не зависит от способа выбора точек
и точек
. Тогда этот предел называется определенным интегралом от функции
на
, обозначается
, а сама функция
называется интегрируемой на отрезке
, то есть
=
.
Экономический смысл интеграла. Если – производительность труда в момент времени
, то
есть объем выпускаемой продукции за промежуток
. Величина и объем продукции, произведенной за промежуток времени
, численно равна площади под графиком функции
, описывающей изменение производительности труда с течением времени, на промежутке
или
.
Достаточное условие существования интеграла. Теорема. Если непрерывна на отрезке
, то она интегрируема на этом отрезке.
Свойства определенного интеграла.
... условий: y(x0)=y0, . Эти начальные условия дают соответственно n уравнений , , , ……………………………… , решая которые относительно c1, c2 , …, cn находят значения этих постоянных. Например, для дифференциального уравнения 1-го порядка общее решение имеет вид y=f(x,c). Тогда начальное условие y(x0)=y0 выделяет из всего семейства интегральных кривых кривую, проходящую через точку M(x0,y0). Геометрическая ...
виде . Определение Д.у. первого порядка называется однородным, если оно может быть представлено в виде . (Для решения используется замена t=y/x)/ Определение Дифференциальное уравнение первого порядка называется линейным, если оно имеет вид (линейное неоднородное). (Сначала решаем уравнение - линейное однородное, находим y и подставляем в исходное). Определение Уравнение вида ...
... коэффициенты an (x1), bn (x1), an (x2), bn (x2) при помощи гармонического анализа, можно определить коэффициент температуропроводности стержня а2. Глава 3. МОДЕЛИРОВАНИЕ С ПОМОЩЬЮ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ. §3.1. Дифракция излучения на сферической частице. Перейдем теперь к рассмотрению задачи о дифракции электромагнитных волн на сферической частице. Как известно, в ...
... в начальный момент (t=0). Совокупность граничных и начальных условий называется краевыми условиями: 2.2. Формула Даламбера. Изучение методов построения решений краевых задач для уравнений гиперболического типа начнем с задачи с начальными условиями для неограниченной струны: (2) (3) Преобразуем это уравнение к каноническому виду, содержащему смешанную производную. Уравнение характеристик ...
0 комментариев