Министерство высшего и профессионального образования РФ

Тульский государственный университет

КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту по дисциплине

«ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ И ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ»

на тему:

«Методы отсечения»

Тула 2003 г.


Содержание

 

Введение

1. Постановка линейной целочисленной задачи

2. Теоретические основы методов отсечения

3. Первый алгоритм Гомори

4. Второй алгоритм Гомори

5. Алгоритм Дальтона и Ллевелина

6. Алгоритм Данцига

7. Некоторые выводы

Заключение

Список литературы

Приложение

Введение

Среди практически важных задач отыскания условного экстремума линейной функции важное место занимают задачи с требованием целочисленности всех (части) переменных. Они получили название задач целочисленного (частично целочисленного) программирования.

Исторически первой задачей целочисленного типа является опубликованная венгерским математиком Е. Эгервари в 1932 г. задача о назначении персонала.

Существуют различные методы решения таких задач, и заметное место среди них занимают методы отсечения. Рассмотрим в этой работе некоторые из методов отсечения, предварительно более подробно разобравшись с постановкой линейных целочисленных задач.


1. Постановка линейной целочисленной задачи

Среди совокупности п неделимых предметов, каждый i-и (i=1,2,…, п) из которых обладает по i-й характеристике показателем  и полезностью  найти такой набор, который позволяет максимизировать эффективность использования ресурсов величины .

Математическая модель этой задачи может быть представлена следующим образом:

в области, определенной условиями

(1)

 

(2)

- целые, . (3)

найти решение при котором максимизируется (минимизируется) значение целевой функции

(4)

Если , то (1–4) является моделью задачи целочисленного программирования, если - моделью задачи частично целочисленного программирования.

Частным случаем задачи целочисленного программирования является задача с булевыми переменными. Ее математическая модель в общем виде записывается следующим образом:

в области, определенной условиями

(5)

(6)

найти решение , при котором максимизируется (минимизируется) значение функции

(7)

К классу задач целочисленного программирования примыкают задачи, в которых условие целочисленности всех или части переменных заменено требованием дискретности. А именно, для каждой j-и переменной  заранее определен набор значений (не обязательно целых), которые она может принимать:  где .

Предполагается, что  ранжированы, т.е.. Математическая модель общей задачи дискретного программирования может быть представлена следующим образом:

в области, определенной условиями

(8)

(9)

найти решение , при котором максимизируется (минимизируется) линейная функция


(10)

Условие (9) определило название этого класса; задач. Если , то (8–10) называется задачей дискретного программирования; если , то (8–10) называется задачей частично дискретного программирования.

Нетрудно видеть, что условие (2–3) задачи (1–4) и условие (6) задачи (5–7) являются частным случаем условия (9) задачи (8–10). Действительно, (2–3) соответствует тому случаю, когда  для . Условие (9) соответствует случаю, когда .

Для задач целочисленного типа определено понятие допустимого и оптимального решения.

Вектор , удовлетворяющий условиям (1–3) (соответственно (8–9)), называется допустимым решением задачи (1–4) (соответственно (8–10)). Допустимое решение, при котором функция (4) (соответственно (10)) достигает наибольшего (наименьшего) значения, называется оптимальным решением.

Определив понятие допустимого и оптимального решения, естественно поставить вопрос об их нахождении. Казалось бы, что естественный путь решения целочисленной задачи состоит в решении соответствующей линейной задачи с последующим округлением компонент ее оптимального плана до ближайших целых чисел. На самом деле такой путь в большинстве случаев не только уводит, от оптимума, но даже приводит иногда к недопустимому решению задачи.

ПРИМЕР. В области, определенной условиями

 – целые

найти максимум функции .

Решим задачу геометрически (рис. 1). Область поиска экстремума – многоугольник ODABC, но так как линия уровня целевой функции параллельна стороне АВ многоугольника, экстремум достигается в вершинах  и , а также в любой точке отрезка АВ, и равен 7.

(рис. 1)

Однако нас интересуют лишь точки с целочисленными координатами, следовательно, ни А, ни В не являются допустимым решением задачи. Округляя значение координат А, получим  Но точка А' не принадлежит области поиска. Можно показать, что целочисленный оптимум достигается в точках N (3; 2) и M (2; 3) и равен 5. Обе точки внутри области поиска.

Построенный нами пример показал, что для решения задач с требованием целочисленности необходимо рассмотреть особые методы оптимизации; и, кроме того, мы видим, что оптимальное решение задач целочисленного программирования не обязательно принадлежит границе многогранника (многоугольника) условий, что было характерно для задач линейного программирования.



Информация о работе «Методы отсечения»
Раздел: Математика
Количество знаков с пробелами: 39387
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
82416
8
19

... 0 505/103 0 792/103 669/103 500/103 Анализ Таблицы 6 позволяет сделать вывод о допустимости и оптимальности базиса XБ4=(x5, x7, x1, x2, x4)T. 3.4 Результат решения задачи планирования производства В результате решения поставленной задачи симплекс-методом получили набор производимой продукции x=(x1, x2, x3, x4, x5)=( 15145/103, 8910/103, 0, 1250/103, 3255/103), который удовлетворяет всем ...

Скачать
41740
5
1

... , 6)  сетевого планирования и управления, 7)  выбора маршрута, 8)  комбинированные. Из перечисленных выше методов математического программирования наиболее развитым и законченным является линейное программирование. В его рамки укладывается широкий круг задач исследования операций. Линейное программирование Несмотря на требование линейности целевой функции и ограничений, в рамки линейного ...

Скачать
29780
1
3

... план будет найден. Заключение. Задачи экономической науки, требующие применения математики Имеется ряд определений предмета экономической теории. Из них вытекает необходимость экономико-математических методов, причем требуется самая изощренная современная математика, как теоретическая, так и прикладная. Фактически существует такая дисциплина, как математическая экономика, которая у ряда ...

Скачать
158931
0
1

... дискретного программирование для решения задач проектирование систем обработки данных. -  Сформулированы задачи диссертационного исследования. 2. БЛОЧНО-СИММЕТРИЧНЫЕ МОДЕЛИ И МЕТОДЫ ПРОЕКТИРОВАНИЯ СИСТЕМ ОБРАБОТКИ ДАННЫХ В данном разделе рассматриваются общая постановка блочно-симметричной задачи дискретного программирования, её особенности и свойства. Разработан общий подход решения задач ...

0 комментариев


Наверх