6. Алгоритм Данцига

 

Способ построения правильных отсекающих плоскостей, предложенный Данцигом значительно проще, чем все изложенные выше способы. Но, как показали Гомори и Гофман, конечность алгоритма Данцига гарантируется лишь для очень узкого класса задач. На примере алгоритма Данцига видно, насколько тонким является вопрос о построении правильных отсечений и сколь осторожно следует подходить к различным упрощенным алгоритмам.

Рассматривается полностью целочисленная задача линейного программирования:

Максимизировать

(39)

при условиях

(40)

(41)

 – целые, (42)


Ранг матрицы  считаем равным m.

Теорема. Пусть x(£r, C)=xr является оптимальным опорным планом задачи (£r, C) и xr не удовлетворяет условию целочисленности, Nr – множество индексов, нумерующих небазисные переменные, соответствующие xr.

Тогда неравенство

(43)

является правильным отсечением.

Правильное отсечение, отсекающее нецелочисленный оптимум x(£r, C) задачи (£r, C), можно записать следующим образом:

 

 

 – целое.

Заметим, что каждая из вновь вводимых переменных  однозначно определяется заданием переменных , так что .

Обозначим через  упорядоченные в порядке возрастания компоненты  плана x задачи (39) – (41), так что

 

(44)

Положим

 

(45)


Лемма. Если для некоторого плана x задачи (39) – (41)

 

, (46)

то

(47)

 

Доказательство проведем по индукции. Сначала докажем, что

(47¢)

По определению

(48)

Так как ранг матрицы  равен m, то

где  – число элементов множества . Из определения чисел  получаем

(49)

(50)

Из (48), (49), (50) и (46) имеем


Лемма доказана при р=1.

Теперь допустим, что лемма верна при , и докажем ее при :

Лемма доказана.

Пользуясь леммой, докажем две теоремы.

Теорема 1. Если каждый оптимальный план задачи (39) – (42) содержит не менее (m+2) положительных компонент, то алгоритм Данцига не будет конечным.

Доказательство. Допустим, что на s-й итерации алгоритма Данцига получится искомый оптимальный план . Рассмотрим числа

(51)

Все они целые и среди них должно быть (n-m) нулей – это небазисные переменные . Кроме того, по условию среди чисел , должно быть по крайней мере (m+2) положительных числа, т.е. не больше чем (n-m-2) нулей.

По определению чисел  отсюда следует, что


а так как  должно быть целым, то

(52)

Но по определению чисел

(53)

Из (52) получаем

(54)

и по лемме

(55)

Из (52), (53) и (55) следует, что среди чисел (51) по крайней мере [1+(m+1)+s] = [m+2+s] положительных, а следовательно, не больше чем [n+s – (m+2+s)] = (n-m-2) нулей. Но выше было отмечено, что среди чисел (51) должно быть (n-m) нулей. Получилось противоречие. Теорема 1 доказана.

Следствие (из теоремы 1). Для того чтобы алгоритм Данцига был конечным, необходимо, чтобы искомый оптимальный план лежал на ребре многогранного множества (40) – (41) (предполагается, что задача (39) – (41) невырожденная).

Хотя это условие и является весьма жестким, ему удовлетворяют, например, все (невырожденные) задачи следующего вида.

Максимизировать


(56)

при условиях

(57)

(58)

(59)

 – целое, (60)

А это важный класс задач.

Однако приведенное в следствии необходимое условие конечности алгоритма Данцига не является достаточным. Действительно, имеет место следующая

Теорема 2. Если для некоторого оптимального плана x' задачи (39) – (42) и некоторого плана x» задачи (39) – (41) имеют место неравенства

 

(61)

и

(62)

то алгоритм Данцига не будет конечным.

Доказательство. Допустим, что алгоритм Данцига конечен. Тогда из (61) следует, что точка x» была отсечена на некоторой (скажем, р-й) итерации, так что

(63)

Но из (62) и леммы получим

(64)

Сравнивая (63) и (64), получаем противоречие. Теорема 2 доказана.

Итак, упрощенный алгоритм Данцига будет конечным лишь в весьма редких случаях.


Информация о работе «Методы отсечения»
Раздел: Математика
Количество знаков с пробелами: 39387
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
82416
8
19

... 0 505/103 0 792/103 669/103 500/103 Анализ Таблицы 6 позволяет сделать вывод о допустимости и оптимальности базиса XБ4=(x5, x7, x1, x2, x4)T. 3.4 Результат решения задачи планирования производства В результате решения поставленной задачи симплекс-методом получили набор производимой продукции x=(x1, x2, x3, x4, x5)=( 15145/103, 8910/103, 0, 1250/103, 3255/103), который удовлетворяет всем ...

Скачать
41740
5
1

... , 6)  сетевого планирования и управления, 7)  выбора маршрута, 8)  комбинированные. Из перечисленных выше методов математического программирования наиболее развитым и законченным является линейное программирование. В его рамки укладывается широкий круг задач исследования операций. Линейное программирование Несмотря на требование линейности целевой функции и ограничений, в рамки линейного ...

Скачать
29780
1
3

... план будет найден. Заключение. Задачи экономической науки, требующие применения математики Имеется ряд определений предмета экономической теории. Из них вытекает необходимость экономико-математических методов, причем требуется самая изощренная современная математика, как теоретическая, так и прикладная. Фактически существует такая дисциплина, как математическая экономика, которая у ряда ...

Скачать
158931
0
1

... дискретного программирование для решения задач проектирование систем обработки данных. -  Сформулированы задачи диссертационного исследования. 2. БЛОЧНО-СИММЕТРИЧНЫЕ МОДЕЛИ И МЕТОДЫ ПРОЕКТИРОВАНИЯ СИСТЕМ ОБРАБОТКИ ДАННЫХ В данном разделе рассматриваются общая постановка блочно-симметричной задачи дискретного программирования, её особенности и свойства. Разработан общий подход решения задач ...

0 комментариев


Наверх