5.  Критерий оптимальности базисного решения транспортной задачи. Методы отыскания оптимального решения.

 

Из сказанного в предыдущем пункте вытекает следующий кри­терий оптимальности базисного решения транспортной задачи: если для некоторого базисного плана перевозок алгебраические суммы тарифов по циклам для всех свободных клеток неотрицательны, то этот план оптимальный.

Отсюда вытекает способ отыскания оптимального решения транспортной задачи, состоящий в том, что, имея некоторое базис­ное решение, вычисляют алгебраические суммы тарифов для всех свободных клеток. Если критерий оптимальности выполнен, то дан­ное решение является оптимальным; если же имеются клетки с отрицательными алгебраическими суммами тарифов, то переходят к новому базису, производя пересчет по циклу, соответствующему одной из таких клеток. Полученное таким образом новое базисное решение будет лучше исходного – затраты на его реализацию будут меньшими. Для нового решения также проверяют выполнимость критерия оптимальности и в случае необходимости снова совершают пересчет по циклу для одной из клеток с отрицательной алгебраиче­ской суммой тарифов и т. д.

Через конечное число шагов приходят к искомому оптимальному базисному решению.

В случае если алгебраические суммы тарифов для всех свобод­ных клеток положительны, мы имеем единственное оптимальное решение; если же алгебраические суммы тарифов для всех свобод­ных клеток неотрицательны, но среди них имеются алгебраические суммы тарифов, равные нулю, то оптимальное решение не единствен­ное: при пересчете по циклу для клетки с нулевой алгебраической суммой тарифов мы получим оптимальное же решение, но от­личное от исходного (затраты по обоим планам будут одина­ковыми).

В зависимости от методов подсчета алгебраических сумм тари­фов для свободных клеток различают два метода отыскания опти­мального решения транспортной задачи:

1.  Распределительный метод. При этом методе для каждой пустой клетки строят цикл и для каждого цикла непосредственно вычисляют алгебраическую сумму тарифов.

2.  Метод потенциалов. При этом методе предварительно находят потенциалы баз и потребителей, а затем вычисляют для каждой пустой клетки алгебраическую сумму тарифов с помощью потен­циалов.

Преимущества метода потенциалов по сравнению с распредели­тельным методом состоят в том, что отпадает необходимость построения циклов для каждой из пустых клеток и упрощается вычисление алгебраических сумм тарифов. Цикл строится только один – тот, по которому производится пересчет.

Применяя метод потенциалов, можно говорить не о знаке алгебраических сумм тарифов, а о сравнении косвенных тарифов с истинными. Требование неотрицательности алгебраических сумм тарифов заменяется условием, что косвенные тарифы не превосхо­дят истинных.

 Следует иметь в виду, что потенциалы (так же как и циклы) для каждого нового базисного плана определяются заново.

Выше рассматривалась закрытая модель транспортной задачи, с правильным балансом, когда выполняется условие (1.3). В случае выполнения (1.4) (открытая модель) баланс транспортной задачи может нарушаться в 2-ух направлениях:

1. Сумма запасов в пунктах отправления превышает сумму поданных заявок (транспортная задача с избытком запасов):

å аi > å bj ( где i=1,...,m ; j=1,...,n );

2. Сумма поданных заявок превышает наличные запасы (транспортная задача с избытком заявок):

å аi < å bj ( где i=1,...,m ; j=1,...,n );

Рассмотрим последовательно эти два случая:

Транспортная задача с избытком запасов.

Сведем её к ранее рассмотренной транспортной задаче с правильным балансом. Для этого, сверх имеющихся n пунктов назначения В1, B2, ... , Bn, введём ещё один, фиктивный, пункт назначения Bn+1, которому припишем фиктивную заявку, равную избытку запасов над заявками

bn+1 = å аi - å bj ( где i=1,...,m ; j=1,...,n ) ,

а стоимость перевозок из всех пунктов отправления в фиктивный пункт назначения bn+1 будем считать равной нулю. Введением фиктивного пункта назначения Bn+1 с его заявкой bn+1 мы сравняли баланс транспортной задачи, и теперь ее можно решать, как обычную транспортную задачу с правильным балансом.

Транспортная задача с избытком заявок.

Эту задачу можно свести к обычной транспортной задаче с правильным балансом, если ввести фиктивный пункт отправления Am+1 с запасом am+1 равным недостающему запасу, и стоимость перевозок из фиктивного пункта отправления во все пункты назначения принять равной нулю.

6.  Задача, двойственная к транспортной.

Построим задачу, двойственную к транспортной. С этой целью вспомним, что каждому пункту отправления  и назначения  отвечает определенное огра­ничение

(6.1)

 

В то же время каждому ограничению из (6.1) сопоставляется определенная неизвестная в двойствен­ной задаче. Тем самым устанавливается соответствие между всеми пунктами  и  и всеми неиз­вестными двойственной задачи.

Обозначим неизвестную в двойственной задаче, отвечаю­щую пункту отправления , через , а пункту назначения  – через .

Каждому неизвестному в транспортной задаче соответ­ствует ограничение, связывающее неизвестные в двойственной задаче. Неизвестное  входит ровно в два ограничения системы (6.1): одно из них отвечает пункту , а другое – пункту . В обоих этих уравнениях коэффициент при  равен 1. Поэтому соответствующее  ограничение в двой­ственной задаче имеет вид

(6.2)

 

 .

Правая часть неравенства (6.2) равна , потому что именно с этим коэффициентом неизвестная  входит в миними­зируемую формулу (2.4).

Оптимизируемая форма двойственной задачи имеет вид

(6.3)

 

Таким образом, задача двойственная к транспортной форму­лируется следующим образом. При ограничениях (6.2) макси­мизировать формулу (6.3). Подчеркнем, что знак значений неиз­вестных  и  может быть произвольным.

Предположим, что нам известно некоторое допустимое базисное решение транспортной задачи, в котором все базис­ные неизвестные строго положительны. Это решение оптимально лишь в том случае, когда соответствующая ей система оказывается совместной. Эта система возникает из системы (6.2), если в ней все неравенства, отвечающие базисным неизвестным  заменить точными равенствами.

В итоге приходим к соотношению:

(6.4)

 
 (для всех свободных неизвестных )

Тем самым мы убеждаемся, что признак оптимальности в работе по методу потенциалов совпадает с необходимым и достаточ­ным условием оптимальности.

7.Пример решения транспортной задачи.

 

В городе N имеется 4 склада Аi, на которых хранится ткань (в рулонах) и 5 магазинов Bj, занимающихся продажей ткани. Ниже, в таблице, приведены данные по количеству рулонов на каждом складе, запросы магазинов и стоимость перевозки одного рулона из Аi в Bj. Необходимо составить такой план перевозок, при котором запросы магазинов будут удовлетворены при минимальной суммарной стоимости перевозок.

 Магазины

Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

А1 1=50)

1,0 2,0 3,0 2,5 3,5

А22=20)

0,4 3,0 1,0 2,0 3,0

А33=75)

0,7 1,0 1,0 0,8 1,5

А44=80)

1,2 2,0 2,0 1,5 2,5

В данном случае Σai=225 >Σbj=220 => имеем дело с открытой моделью транспортной задачи. Сведем ее к закрытой введением фиктивного магазина B6 с потребностью b5=225-220=5 и стоимостью перевозок сi6=0.Имеем таблицу:

 

 Магазины

Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

B6

(b6=5)

А1 1=50)

1,0 2,0 3,0 2,5 3,5 0

А22=20)

0,4 3,0 1,0 2,0 3,0 0

А33=75)

0,7 1,0 1,0 0,8 1,5 0

А44=80)

1,2 2,0 2,0 1,5 2,5 0

Математическая модель: обозначим xij – количество товара, перевозимого из Аi в Bj.  Тогда

x11 x12 x13 x14 x15 x16

x21 x22 x23 x24 x25 x26

X = x31 x32 x33 x34 x35 x36 - матрица перевозок.

x41 x42 x43 x44 x45 x46

min(x11+2x12+3x13+2,5x14+3,5x15+0,4x21+3x22+x23+2x24+3x25+0,7x31+x32+x33+0,8x34+1,5x35++1,2x41+2x42+2x43+1,5x44+2,5x45) (1)

x11+x12+x13+x14+x15+x16=50

x21+x22+x23+x24+x25+x26=20

x31+x32+x33+x34+x35+x36=75

x41+x42+x43+x44+x45+x46=80

x11+x21+x31+x41=40 (2)

x12+x22+x32+x42=50

x13+x23+x33+x43=15

x14+x24+x34+x44=75

x15+x25+x35+x45=40

x16+x26+x36+x46=5

xij≥0 (i=1,2,3,4 ; j=1,2,3,4,5,6 ) (3)

Двойственная ЗЛП:

max(50u1+20u2+75u3+80u4+40v1+50v2+15v3+75v4+40v5+5v6) (1*)


u1+v1≤1

u1+v2≤2

u1+v3≤3 (2*)

u1+v4≤2,5

u1+v5≤3,5

u1+v6≤0

ui,vj – произвольные (i=1,2,3,4 ; j=1,2,3,4,5,6 ) (3*)

Будем искать первоначальный план по методу наименьшей стоимости:

1) x21=20и 2-ую строку исключаем.2) x31=20и 1-ый столбец исключаем.

3) x34=55и 3-ю строку исключаем.4) x44=20и 4-ый столбец исключаем.

5) x12=50 и 1-ю строку и 2-ой столбец исключаем и x32=0. 6) x43=150 и 3-ий столбец исключаем.7) x45=40 и 5-ый столбец исключаем.x46=5.Составим таблицу. Здесь и далее в нижнем правом углу записываем значение перевозки.

 Магазины

Склад

B1

(b1=40)

B2

(b2=50)

B3

(b3=15)

B4

(b4=75)

B5

(b5=40)

B6

(b6=5)

А1 1=50)

1,0

50

 
2,0

3,0

2,5

3,5

0

А22=20)

0,4

20

 
3,0 1,0 2,0 3,0 0

А33=75)

0,7

20

 

0

 
1,0
1,0

55

 
0,8
1,5 0

А44=80)

1,2 2,0

15

 
2,0

20

 
1,5

40

 
2,5

5

 
0

Стоимость 1-ого плана:

 D1=2•50+0,4•20+0,7•20+0,8•55+2•15+1,5•20+2,5•40=326.

Будем улучшать этот план методом потенциалов: ui- потенциал Аi ,vj- потенциал Bj. Тогда u1+v2=2,u2+v1=0,4, u3+v1=0,7, u3+v2=1, u3+v4=0,8, u4+v3=2, u4+v4=1,5, u4+v5=2,5 ,u4+v6=0.Положим u1=0,тогда v2=2,u3=-1,v1=1,7,v4=1,8, u2=-1,3,u4=-0,3, v3=2,3,v5=2,8,v6=0,3.Составим таблицу:

 Магазины

Склад

B1

(b1=40)

v1=1,7

B2

(b2=50)

v2=2

B3

(b3=15)

v3=2,3

B4

(b4=75)

v4=1,8

B5

(b5=40)

v5=2,8

B6

(b6=5)

v6=0,3

А1 1=50)

U1=0

1,0 2,0 3,0 2,5 3,5 0

А22=20)

U2=-1,3

0,4 3,0 1,0 2,0 3,0 0

0

 
А33=75)

U3=-1

Овал: -

0

 
0,7

20

 

Овал: +

0,3

 

0

 
1,0

0

 
1,0

0,3

 

55

 
0,8

 - 0,7

 
1,5
0

0,2

 
А44=80)

U4=-0,3

 - 0,3

 
1,2

0

 
2,0

0

 

15

 
2,0

0

 

20

 
1,5

0

 

40

 
2,5

5

 
0

В верхнем левом углу здесь и далее записываем значение ui+vj-cij. Имеем: u1+v1--c11 =0,7>0, u1+v6-c16 =0,3>0, u3+v3-c33 =0,3>0, u3+v5-c35 =0,3>0,

u4+v1-c41 =0,2>0. => По критерию оптимальности, первый план не оптимален. Далее max(0,7;0,3;0,3;0,3;0,2)=0,7. => Поместим перевозку в клетку А1В1,сместив 20=min(20,50) по циклу, указанному в таблице штрихом. Получим новую таблицу. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u3+v4=0,8, u4+v3=2, u4+v4=1,5, u4+v5=2,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,8, u3=-1, u4=-0,3,v3=2,3,v5=2,8,v6=0,3. Составим таблицу:

 Магазины

Склад

B1

(b1=40)

v1=1

B2

(b2=50)

v2=2

B3

(b3=15)

v3=2,3

B4

(b4=75)

v4=1,8

B5

(b5=40)

v5=2,8

B6

(b6=5)

v6=0,3

0

 
А1 1=50)

U1=0

Овал: +

0

 
1,0

20

 

Овал: -

 - 0,7

 

30

 
2,0

 - 0,7

 
3,0

 - 0,7

 
2,5

 0,3

 
3,5
0

0

 
А22=20)

U2=-0,6

Овал: -

 - 1,6

 

20

 
0,4

0,7

 
3,0

Овал: +

 - 0,8

 
1,0

 - 0,8

 
2,0

 - 0,3

 
3,0
0

 -0,7

 
А33=75)

U3=-1

0

 
0,7

Овал: +

0,3

 

20

 
1,0

0

 
1,0

Овал: -

0,3

 

55

 
0,8

 - 0,7

 
1,5
0

-0,5

 
А44=80)

U4=-0,3

 - 0,3

 
1,2

0

 
2,0

Овал: -

0

 

15

 
2,0

Овал: +

0

 

20

 
1,5

0

 

40

 
2,5

5

 
0

Стоимость 2-ого плана:

D2=1•20+2•30+0,4•20+1•20+0,8•55+2•15+1,5•20+2,5•40=312.

Имеем:u1+v6-c16 =0,3>0, u2+v3-c23 =0,7>0, u3+v3-c33 =0,3>0, u3+v5-c35 =0,3>0. => По критерию оптимальности, второй план не оптимален. Далее max(0,3;0,7;0,3;0,3)=0,7 => Поместим перевозку в клетку А2В3,сместив 15=min(20,30,55,15) по циклу, указанному в таблице штрихом. Получим новую таблицу. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u3+v4=0,8, u2+v3=1, u4+v4=1,5, u4+v5=2,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,8, u3=-1, u4=-0,3,v3=1,6, v5=2,8, v6=0,3. Составим таблицу:

 Магазины

Склад

B1

(b1=40)

v1=1

B2

(b2=50)

v2=2

B3

(b3=15)

v3=1,6

B4

(b4=75)

v4=1,8

B5

(b5=40)

v5=2,8

B6

(b6=5)

v6=0,3

0

 
А1 1=50)

U1=0

0

 
1,0

35

 

 -1,4

 

15

 
2,0

 - 0,7

 
3,0

 - 0,7

 
2,5

 0,3

 
3,5
0

0

 
А22=20)

U2=-0,6

 - 1,6

 

5

 
0,4

0

 
3,0

15

 

 - 0,8

 
1,0

 - 0,8

 
2,0

 - 0,3

 
3,0
0

 -0,7

 
А33=75)

U3=-1

0

 
0,7

 -0,4

 

35

 
1,0

0

 
1,0

Овал: -

0,3

 

40

 
0,8

Овал: +

 - 0,7

 
1,5
0

-0,5

 
А44=80)

U4=-0,3

 - 0,3

 
1,2

-0,7

 
2,0

0

 
2,0

Овал: +

0

 

35

 
1,5

Овал: -

0

 

40

 
2,5

5

 
0

Стоимость 3-его плана:

 D3=1•35+2•15+0,4•5+1•15+0,8•40+1•35+1,5•35+2,5•40=301,5.

Имеем:u1+v6-c16 =0,3>0,u3+v5-c35 =0,3>0. => По критерию оптимальности, третий план не оптимален. Далее max(0,3;0,3)=0,3. => Поместим перевозку в клетку А3В5,сместив 40=min(40,40) по циклу, указанному в таблице штрихом. Получим новую таблицу. Чтобы 4-ый план был невырожденным, оставим в клетке А4В5 нулевую перевозку. Найдем потенциалы: u1+v1=1,u1+v2=2,u2+v1=0,4,u3+v2=1, u4+v5=2,5, u2+v3=1, u4+v4=1,5, u3+v5=1,5 , u4+v6=0. Положим u1=0,тогда v1=1,u2=-0,6,v2=2,v4=1,5, u3=-1,u4=0, v3=1,6, v5=2,5, v6=0. Составим таблицу:

 Магазины

Склад

B1

(b1=40)

v1=1

B2

(b2=50)

v2=2

B3

(b3=15)

v3=1,6

B4

(b4=75)

v4=1,5

B5

(b5=40)

v5=2,5

B6

(b6=5)

v6=0

0

 
А1 1=50)

U1=0

0

 
1,0

35

 

 - 1,4

 

15

 
2,0

 - 1

 
3,0

 - 1

 
2,5

0

 
3,5
0

0

 
А22=20)

U2=-0,6

 - 1,6

 

5

 
0,4

0

 
3,0

15

 

 - 1,1

 
1,0

 - 1,1

 
2,0

 - 0,6

 
3,0
0

 -0,7

 
А33=75)

U3=-1

0

 
0,7

 -0,4

 

35

 
1,0

-0,3

 
1,0

0

 
0,8

40

 

 - 1

 
1,5
0

-0,2

 
А44=80)

U4=0

 0

 
1,2

-0,4

 
2,0

0

 
2,0

0

 

75

 
1,5

0

 

0

 
2,5

5

 
0

Стоимость 4-ого плана: D4=1•35+2•15+0,4•5+1•15+1•35+1,5•40+1,5•75=289,5.

Для всех клеток последней таблицы выполнены условия оптимальности:

1)ui+vjij=0 для клеток, занятых перевозками;

2)ui+vjij≤0 для свободных клеток.

Несодержательные ответы:

Прямой ЗЛП:

35 15 0 0 0 0

5 0 15 0 0 0

X = 0 35 0 0 40 0

0 0 0 75 0 5

min=289,5.

Двойственной ЗЛП:

U1=0 ; U2=-0,6 ; U3=-1 ; U4=0 ; V1=1 ; V2=2 ; V3=1,6 ; V4=1,5 ; V5=2,5 ; V6=0.

max=289,5.

Так как min=max, то по критерию оптимальности найдены оптимальные решения прямой и двойственной ЗЛП. Содержательный ответ: Оптимально перевозить так:

Из А1 вB1 – 35 рулонов полотна;

Из А1 вB2 – 15 рулонов полотна;

Из А2 вB1 – 5 рулонов полотна;

Из А2 вB3 – 15 рулонов полотна;

Из А3 вB2 – 35 рулонов полотна;

Из А3 вB5 – 40 рулонов полотна;

Из А4 вB4 – 75 рулонов полотна.

При этом стоимость минимальна и составит Dmin=289,5. 5 рулонов полотна необходимо оставить на складе А4 для их последующей перевозки в другие магазины.

8.Выводы.

В курсовой работе изложены основные подходы и методы решения транспортной задачи, являющейся одной из наиболее распространенных задач линейного программирования. Решение данной задачи позволяет разработать наиболее рациональные пути и способы транспортирования товаров, устранить чрезмерно дальние, встречные, повторные перевозки. Все это сокращает время продвижения товаров, уменьшает затраты предприятий и фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.

Алгоритм и методы решения транспортной задачи могут быть использованы при решении некоторых экономических задач, не имеющих ничего общего с транспортировкой груза. В этом случае величины тарифов cij имеют различный смысл в зависимости от конкретной экономической задачи. К таким задачам относятся следующие:

-  оптимальное закрепление за станками операций по обработке деталей. В них cij является таким экономическим показателем, как производительность. Задача позволяет определить, сколько времени и на какой операции нужно использовать каждый из станков, чтобы обработать максимальное количество деталей. Так как транспортная задача требует нахождения минимума, то значения cij берутся с отрицательным знаком;

-  оптимальные назначения, или проблема выбора. Имеется m механизмов, которые могут выполнять m различных работ с производительностью cij. Задача позволяет определить, какой механизм и на какую работу надо назначить, чтобы добиться максимальной производительности;

-  задача о сокращении производства с учетом суммарных расходов на изготовление и транспортировку продукции;

-  увеличение производительности автомобильного транспорта за счет минимизации порожнего пробега. Уменьшение порожнего пробега сократит количество автомобилей для перевозок, увеличив их производительность;

-  решение задач с помощью метода запрещения перевозок. Используется в том случае, если груз от некоторого поставщика по каким-то причинам не может быть отправлен одному из потребителей. Данное ограничение можно учесть, присвоив соответствующей клетке достаточно большое значение стоимости, тем самым в эту клетку не будут производиться перевозки.

Таким образом, важность решения данной задачи для экономики несомненна. Приятно осознавать, что у истоков создания теории линейного программирования и решения, в том числе и транспортной задачи, стоял русский ученый – Леонид Витальевич Канторович.

 

 

 

 

Список используемой литературы:

 

1. Кузнецов А.В., Сакович В.А., Холод Н.И. ”Высшая математика. Математическое программирование ”, Минск, Вышейшая школа, 2001г.

2. Красс М.С., Чупрынов Б.П. ”Основы математики и ее приложения в экономическом образовании”, Издательство “Дело”, Москва 2001г.

3. В.И. Ермаков “Общий курс высшей математики для экономистов”, Москва, Инфра-М, 2000г.


Информация о работе «Транспортная задача линейного программирования»
Раздел: Математика
Количество знаков с пробелами: 48425
Количество таблиц: 13
Количество изображений: 5

Похожие работы

Скачать
62893
11
17

... . При этом значения cij соответствуют коэффициентам целевой функции исходной замкнутой транспортной задачи (1) и в последующем не изменяются. Элементы xij соответствуют значениям переменных промежуточных решений транспортной задачи линейного программирования и изменяются на каждой итерации алгоритма. Если в некоторой ячейке xij=0, то такая ячейка называется свободной, если же xij>0, то такая ...

Скачать
15346
5
0

... получение которого связано с большим объемом вычислительных работ. Обычно рассмотренный метод используется при вычислениях с помощью ЭВМ. Как и для всякой задачи линейного программирования, оптимальный план транспортной задачи является и опорным планом. Для определения оптимального плана транспортной задачи можно использовать изложенные выше методы. Однако ввиду исключительной практической ...

Скачать
34424
6
3

... задачи линейного программирования, они очень сложны и решаются специальными, обычно многостадийными приемами с использованием эвристических элементов. 3. Решение задач   3.1. Решение задачи линейного программирования   3.1.1.Постановка задачи Сформулируем задачу: Определить значения переменных, обеспечивающие минимизацию целевой функции. Составим целевую функцию и зададим ограничения. ...

Скачать
16245
2
0

... в этой области был отмечен Ленинской премией в 1965 году (присуждена ему совместно с В.С.Немчиновым и В.В.Новожиловым) и, как уже говорилось, Нобелевской премией в 1975 году.II.ОСНОВНЫЕ НАПРАВЛЕНИЯ ИСПОЛЬЗОВАНИЯ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ В ВОЕННОМ ДЕЛЕ.Наиболее распространенными направлениями использования линейного программирования в военном деле являются: задача о перевозках (транспортная ...

0 комментариев


Наверх