3.2. Проверку случайности уровней ряда остатков проведем на основе критерия поворотных точек. P > [2/3(n-2) – 1, 96 √ (16n-29)/90]

Количество поворотных точек равно 6 (рис.4.5).

Рис. 4.5

Неравенство выполняется (6 > 2). Следовательно, свойство случайности выполняется. Модель по этому критерию адекватна.

3.3. Соответствие ряда остатков нормальному закону распределения определим при помощи RS – критерия:

, где

 - максимальный уровень ряда остатков,

- минимальный уровень ряда остатков,

- среднеквадратическое отклонение,

,

Расчетное значение попадает в интервал (2,7-3,7), следовательно, выполняется свойство нормальности распределения. Модель по этому критерию адекватна.

3.4. Проверка равенства нулю математического ожидания уровней ряда остатков.

В нашем случае , поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

В таблице 4.3 собраны данные анализа ряда остатков.

Таблица 4.3

Проверяемое свойство Используемые статистики Граница Вывод
наименование значение нижняя верхняя
Независимость d-критерий 0,85 1,08 1,36 неадекватна
Случайность Критерий поворотных точек 6>2 2 адекватна
Нормальность RS-критерий 2,81 2,7 3,7 адекватна
Среднее=0? t-статистика Стьюдента 0 -2,179 2,179 адекватна
Вывод: модель статистики неадекватна

4) Оценить точность модели на основе использования средней относительной ошибки аппроксимации.

Для оценки точности полученной модели будем использовать показатель относительной ошибки аппроксимации, который вычисляется по формуле:

, где

Расчет относительной ошибки аппроксимации

Таблица 4.4

t Y Предсказанное Y

 

1 5 4,58 0,42 0,08
2 7 7,21 -0,21 0,03
3 10 9,84 0,16 0,02
4 12 12,48 -0,48 0,04
5 15 15,11 -0,11 0,01
6 18 17,74 0,26 0,01
7 20 20,38 -0,38 0,02
8 23 23,01 -0,01 0,00
9 26 25,64 0,36 0,01
Сумма 45 136 0,00 0,23
Среднее 5 15,11

Если ошибка, вычисленная по формуле, не превосходит 15%, точность модели считается приемлемой.

5) По построенной модели осуществить прогноз спроса на следующие две недели (доверительный интервал прогноза рассчитать при доверительной вероятности р = 70%).

Воспользуемся функцией Excel СТЬЮДРАСПОБР. (рис. 4.10)

 t = 1,12

Рис. 4.6

Для построения интервального прогноза рассчитаем доверительный интервал. Примем значение уровня значимости , следовательно, доверительная вероятность равна 70 %, а критерий Стьюдента при  равен 1,12.

Ширину доверительного интервала вычислим по формуле:

, где

  (находим из таблицы 4.1)

,

.

Вычисляем верхнюю и нижнюю границы прогноза (таб. 4.11).

Таблица 4.5

Таблица прогноза

n +k U (k) Прогноз Формула Верхняя граница Нижняя граница
10 U(1) =0.84 28.24 Прогноз + U(1) 29.сен 27.40
11 U(2) =1.02 30.87 Прогноз - U(2) 31.89 29.85

 

6) Фактические значения показателя, результаты моделирования и прогнозирования представить графически.

Преобразуем график подбора (рис. 4.5), дополнив его данными прогноза.

Рис. 4.7


Информация о работе «Экономико-математические методы и прикладные модели»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 20192
Количество таблиц: 18
Количество изображений: 12

Похожие работы

Скачать
40642
1
0

... Ю.Н. Математические методы в экономике: Учебник.2-е изд. – М.: МГУ им. М.В. Ломоносова, Издательство «Дело и Сервис», 1999. – 368 с. 7.  Монахов А.В. Математические методы анализа экономики. – Спб: Питер, 2002. – 176 с. 8.  Экономико-математические методы и прикладные модели: Учеб. пособие для вузов /В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др., Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999. ...

Скачать
17837
7
5

... решений целевая функция принимает в точке (0; 6), и это значение равно .     рис. 1 - Графическое решение задачи линейного программирования ЗАДАЧА 2   Использовать аппарат теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования Для изготовления четырех видов продукции используют три вида сырья. ...

Скачать
56439
2
17

... модели по тем свойствам, которые выбраны в качестве существенных (другими словами, должны быть произведены верификация и валидация модели). Применение численных результатов моделирования в экономике направлено на решение практических задач (анализ экономических объектов, экономическое прогнозирование развития хозяйственных и социальных процессов, выработка управленческих решений на всех уровнях ...

Скачать
48813
19
4

... , что найденный вариант является наилучшим. В современных условиях даже не значительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяют в одну группу под общим названием « ...

0 комментариев


Наверх