3.1. Сущность приёмов активизации

 

Для того, чтобы добиться активности учащихся на уроке математике, нужно применять приёмы активизации познавательной деятельности.

Приём - составная часть или отдельная сторона метода. В процессе обучения приёмы играют важную роль, поскольку они побуждают учащихся к активному участию в освоении учебного материала: постановка вопросов при изложении учебной информации, включение в него отдельных практических упражнений, ситуационных задач, обращение к наглядным и техническим средствам, побуждение к ведению записей. Также с целью повышения активности учащихся на уроке используются различные методы: проблемные, объяснительно - иллюстративные, логические, метод самостоятельной работы, дидактическая игра, нестандартные виды уроков, тесты, а также различные формы учебной деятельности (УДЕ П. М. Эрдниева, развивающее обучение Л. В. Занкова, С. Н. Лысенковой, В. Ф. Шаталова).

Метод и приём могут меняться местами. Но независимо от этого, учитель обязан включить в структуру своего урока тот или иной приём, метод. В результате у учащихся будет формироваться интерес к учебному процессу, повышаться активность, что имеет немало важное значение для учителя в его работе.

3.1.1 Использование исторического материала при изучении нумерации многозначных чисел

Одним из приёмов активизации познавательной деятельности учащихся на уроках изучение нумерации многозначных чисел является использование исторического материала. При введении понятия “многозначные числа” детей следует познакомить с историей возникновения величин и развитием способов записи целых неотрицательных чисел. Для этого полезно провести беседу.

Как давно люди пользуются десятичной системой записи чисел? Историки считают, что десятичная система сложилась в Индии примерно в VI веке. У индийцев её заимствовали арабы, а в Европе десятичная система получила распространение в X - XIII веках.

А как записывали числа до возникновения десятичной системы счисления?

Понятие числа возникло в глубокой древности. Тогда же возникла необходимость в записи чисел. Ещё до появления письменности люди умели называть числа, вести счёт. В этом им помогали различные приспособления, и прежде всего пальцы рук и ног. Употреблялся и такой вид инструментального счёта, как деревянные палочки с зарубками, шнуры и верёвки с узлами. Конечно, способ “записи” чисел при помощи зарубок и узлов был не слишком удобным, поскольку для записи больших чисел приходилось делать много зарубок или узлов, что затрудняло не только запись, но и сравнение чисел друг с другом, трудно было выполнять и действия над числами. Поэтому возникли иные, более экономные способы записи чисел: счёт стали вести группами, состоящими из одинакового числа элементов. Этому способствовало развитие счёта при помощи пальцев рук и ног. Переход человека к пальцевому счёту привёл к созданию различных систем счисления: пятеричной, десятичной, двадцатеричной и др.

Вообще самой старой системой счисления считается двоичная. Она возникла, когда человек вёл счёт не по пальцам, а при помощи рук, т. е. когда единицей низшего разряда являлась одна рука, а единицей высшего разряда две руки. Следы этой системы сохранились и сегодня - они выражаются в стремлении считать парами. Их дальнейшее развитие происходило в эпоху формирования древнейших государств - Вавилона, Египта, Китая и др., т. е. около пяти тысяч лет тому назад. В этот период были созданы новые способы записи чисел.

В Древнем Вавилоне считали группами по шестьдесят, т. е. система счисления здесь была шестидесятиричная. Например, число 137 вавилонский математик представлял себе так: 137 = 2 . 60 + 17. Конечно, записывалось число другими знаками - треугольными клиньями. Дело в том, что записи древние вавилоняне производили на глиняных табличках путём выдавливания из них треугольных клиньев. Потом эти таблички сушили и обжигали.

Для записи чисел использовались положения клина: вертикальное - остриём вниз и горизонтальное - остриём влево. При этом знак  означал единицу и шестьдесят, знак - десяток. Другие числа изображались при помощи знаков и действия. Например, число 5 изображалось так:


Однако изображённая в Древнем Вавилоне запись чисел имела недостатки: в ней трудно было изображать большие числа, не было специального знака для основания системы счисления - числа 60, что приводило к разночтению отдельных записей.

Почему в основу своей системы счисления вавилоняне положили число 60? Однозначно ответить на этот вопрос трудно. Отметим только, что древние вавилоняне располагали достаточно большим запасом знаний в различных областях: математике, астрономии. Существует предположение, что основой для создания шестидесятиричной системы счисления послужило деление окружности на 360 равных частей, которое в свою очередь, было произведено ими в соответствии с разделением года на 360 дней.

Древние египтяне считали десятками. Но специальные знаки у них были только для разрядов: единиц, десятков, сотен, тысяч и т.д.

Числа от одного до девяти записывались с помощью палочек.

Записи производились преимущественно красками на папирусе. Иногда же материалом для записи служили камень, дерево, кожа, холст, черепки. Текст записывался строками справа налево или столбиками сверху вниз.

Большой вклад в математику внесли ученые Древней Греции: Фалес (624 - 547 г.г. до н. э.), Пифагор (ок. 580 – 500 г.г. до н. э.), Демокрит (ок. 460 – 370 г.г. до н. э.), Платон (427 – 347 г.г. до н.э.), Евклид (ок. 300 г. до н.э.), Архимед (ок. 287 – 212 г.г. до н.э.), Эратосфен (ок. 276 – 194 г. г до н.э.) и др.

Это целая эпоха в истории и развитии учения о числе.1

В Древней Греции родилась ещё одна система записи чисел - алфавитная. В ней числа изображались буквами греческого алфавита. Первые девять букв алфавита изображали числа от 1 до 9, следующие девять - десятки и последние девять - сотни.

Для изображения чисел, больших тысячи, употреблялись дополнительные символы.

Две с небольшим тысячи лет тому назад почти все страны Западной Европы и многие страны Азии были покорены древними римлянами. Ориентация на захватнические войны привела к тому, что в Римской империи математика не развивалась, она использовалась только для практических целей. Из того немного, что оставил Древний Рим, это ещё один способ записи чисел. В римской системе счисления так же, как и в древнеегипетской, есть узловые числа:

 единица - I пятьдесят - L

 пять - V сто - C

 десять - X пятьсот - D

 тысяча - М

Все другие числа получаются из узловых при помощи двух арифметических действий: сложения и вычитания. Вычитание производится тогда, когда знак, соответствующий меньшему узловому числу, стоит перед знаком большего узлового числа. Например, IV - четыре, Х С - девяносто, ХL - сорок.

Числа четырёх - , пяти - , шестизначные записываются с помощью буквы m (от лат. слова mille - тысяча), слева от которой записывают тысячи, а справа - сотни, десятки, единицы. Так, запись ХХIХ mDCXXXV есть запись числа 29635, а запись СХХХVII m DCCXLV является записью числа 137745.

В V - XII веках значительное развитие математики происходило в странах Востока: в Индии, и на Ближнем Востоке.

В Индии и Китае математика зародилась примерно пять тысяч лет назад, т.е. тогда же, когда и в Египте. Учёные - историки отмечают также, что индийская наука и наука греческая были взаимосвязаны. Но если у греков преимущественное развитие получила геометрия, то в Индии более существенные результаты были получены в области арифметики, алгебры, тригонометрии. Особенно ценен вклад индийских учёных в арифметику - они изобрели десятичную систему счисления, т. е. тот способ записи и чтения чисел, которым теперь пользуется всё человечество. Датируется это событие VI в. н. э.

Цифры, с помощью которых записываются числа в десятичной системе счисления, тоже были придуманы (не сразу) математиками Древней Индии. Хотя, конечно, первоначальное написание значительно отличается от современного. Нынешняя форма записи числа установилась только после изображения книгопечатания - в XV веке.

Почему же цифры, изобретённые в Индии, часто называют арабскими? Дело в том, что возникшее в VII - веке на Аравийском полуострове государство арабов за двести лет подчинило себе значительное число государств, стоящих на более высокой степени развития. В состав Арабского халифата входили, например, Северная Индия, Египет, Средняя Азия, Месопотамия, Персия, Закавказье, Северная Африка и другие государства. Столицей этого огромного государства был Багдад, который стал центром арабской культуры. Арабы понимали значение науки и тщательно собирали, изучали и переводили на свой язык труды учёных завоёванных стран, в том числе Греции, Индии, Средней Азии.

Однако арабские математики не только сохранили труды учёных древности, но и внесли большой вклад в развитие математики.

Выдающимся учёным IX века был узбекский математик Мухаммед бен Муса аль - Хорезми. Его книга “Китаб аль – Джебр” где изложены правила решения арифметических задач и уравнений, дала имя науке алгебре.

В другой своей книге аль - Хорезми описал индийскую арифметику. Триста лет спустя её перевели на латинский язык, и она стала первым учебником арифметики для всех европейских народов.

Вследствие того, что десятичную систему счисления в странах Европы изучали по книге, написанной автором, жившим в Арабском государстве, индийские цифры десятичной системы счисления стали неправильно называться арабскими цифрами.

Начиная с ХII века в Западной Европе после долгого застоя зарождается интерес к математике.

Распространению десятичной систем счисления в Европе способствовала “Книга абака” Леонардо Фибоначчи, изданная в 1202 году. С ХIII века начинается внедрение десятичной системы, и к XVI веку она стала повсеместно использоваться в странах Западной Европы.

 


Информация о работе «Приёмы активизации учащихся в процессе обучения математике в начальных классах при изучении нумерации многозначных чисел»
Раздел: Педагогика
Количество знаков с пробелами: 100502
Количество таблиц: 9
Количество изображений: 1

Похожие работы

Скачать
73355
2
1

... пособий в процессе изучения чисел первого десятка нами был проведен формирующий этап эксперимента, о котором пойдет речь в следующем параграфе. 2.2 Организация работы по использованию наглядных пособий в процессе изучения чисел первого десятка Одним из центральных понятий начального курса математики является понятие натурального числа. Оно трактуется как количественная характеристика класса ...

Скачать
108959
12
10

... росту. Существует определенная взаимосвязь проблем воспитания познавательного интереса и развития мышления в процессе обучения математике. Глава II Развитие познавательного интереса к урокам математики младших школьников средствами использования занимательных дидактических игр 2.1 Дидактические игры, их виды В отличие от других видов деятельности игра содержит цель в самой себе; ...

Скачать
47834
0
0

... . Нужно учитывать индивидуальные особенности детей, проводить физкультминутки, чтобы снять утомление. Глава 2. Методика развития математических способностей младших школьников в классах коррекции.   1.Особенности структурирования математического материала в классах коррекции. На изучение математики в учебном плане начальной школы отводится четвёртая часть всего времени. Также, ...

Скачать
37936
0
3

... , неуверенностью в выполнении дозированных движений, снижением скорости и ловкости выполнения. Наибольшие трудности выявляются при выполнении движений по словесной инструкции. Дети c общим недоразвитием речи отстают от нормально развивающихся сверстников в воспроизведении двигательного задания по пространственно-временным параметрам, нарушают последовательность элементов действия, опускают его ...

0 комментариев


Наверх