4.2. Использование дидактических игр при изучении нумерации многозначных чисел
Изучение нумерации многозначных чисел представляется учащимся непосильным трудом. Это связано и с терминологией, и с абстрактностью понятий, так как при ознакомлении с многозначными числами нельзя использовать предметные действия. Их в этом случае заменяют различные схемы, типа таблицы разрядов и классов, также разные методические приёмы. Например, такой приём, как определение количества цифр в числе.
Поэтому эффективным средством, подготавливающим учащихся к восприятию и осмыслению сложных понятий, являются дидактические игры. Они помогают в изучении устной нумерации многозначных чисел, а также сплачивают детский коллектив, где каждый участник или команда в целом объединены решением задачи.
В содержание дидактических игр необходимо включать задания для ознакомления и закрепления знаний, учащихся по данной теме. Такими заданиями на ознакомление может стать повторение нумерации чисел в пределах тысячи; упражнения, включающие образование тысячи.
Учащиеся вовлекаются в учебный процесс, становятся более активными.
Одним из приёмов дидактической игры, проводимой на уроках, посвящённых изучению нумерации многозначных чисел, является
“Допишите пропущенные цифры”
Цель: отработать навык сложения многозначных чисел.
Содержание игры. Перед началом игры учитель на доске решает пример на сложение с пропущенными цифрами. Затем к доске выходят пять - шесть человек и под руководством учителя решают подобные примеры. Только после такой предварительной подготовки учащимся можно предложить решать такие примеры самостоятельно.
? 5 4 3 ? 2 ? 7 4 ? 6 ? 5 ? ? ? 3 6 ?
1 ? 4 ? 2 ? 3 ? ? 7 ? 3 ? 7 1 ? 6 ? 4
4 6 8 7 9 9 7 9 6 9 1 8 0 0 3 7 9 8 7
предложенные примеры должны быть решены учащимися за определённый срок. Кто решил правильно большее количество примеров за этот срок - выигрывает. Можно также организовать соревнование между двумя - тремя учениками. Выигрывает тот, кто верно и быстрее решил все примеры.
Примечание. Примеры с пропущенными цифрами можно дать учащимся и на другие арифметические действия.
Вывод к главе 4
В использовании дидактических игр при изучении нумерации многозначных чисел есть и плюсы, и минусы. Постоянно применять метод дидактических игр, значит, сделать процесс обучения для учащихся скучным и однообразным. А ведь детям младшего школьного возраста для повышения активности характерна смена деятельности. То есть дидактические игры при изучении нумерации многозначных чисел использовать ежеурочно не рекомендуется.
Глава 5. Исследовательская работа, выявляющая значение каждого приёма активизации при изучении нумерации многозначных чисел
Автор дипломной работы провёл исследования, которые помогли ему определить значение каждого приёма активизации в изучении и усвоении раздела: “Нумерация многозначных чисел”.
Результаты наблюдений отражены в следующей таблице:
Этап урока Приём активизации деятельности школьника | 1 | 2 | 3 | 4 | 5 |
Обращение к наглядности: предметной схематической | + | + | + | ||
Дидактическая игра | + + + | + | |||
Поощрение | + + + | + | |||
Сравнение | |||||
Проблемная ситуация | + | ||||
Логическая задача | + | + |
Проанализировав таблицу, можно сделать вывод: на первом этапе урока чаще использовались дидактическая игра и поощрение. То есть, при актуализации ранее изученного учитель чаще прибегал к дидактическим играми и поощрениям.
Также автор дипломной работы провёл наблюдения за деятельностью учителя и учащихся на уроке при актуализации знаний.
Этап урока | Деятельность | Анализ урока | |
учителя | учащихся | ||
1. | Послушайте логическую задачу и ответьте на её вопрос. (Учитель читает задачу: “При массе “Царь - колокола” в 12000 пудов его звук слышен на 60 км. Какова должна быть масса колокола, чтобы его звук распространялся на 20 км?”). А теперь посмотрите на доску. Необходимо сравнить многозначные числа. И последнее задание – дидактическая игра “Парашютисты”. | Учащиеся отвечают: “400 пудов, так как расстояние уменьшается в 3 раза, значит, и масса уменьшится в 3 раза.” Учащиеся сравнивают. Учащиеся выполняют задание: находят значение выражений. | На данном этапе учащиеся были заинтересованы логической задачей, включающей исторические сведения. Активность учащихся была высокой. Темп урока высокий. Учитель спрашивал всех учащихся, требовал полных ответов. Проводилась отработка умений сравнивать многозначные числа. Прослеживается межпредметная связь. Активность учащихся. Отработка навыка умножения многозначных чисел на натуральное число. |
Активность учащихся на данном уроке зависела не только от применённых приёмов, но и от методически верной работы учителя. Он смог заинтересовать учащихся даже самим содержанием задачи. Интерес к ней проявляется в том, что в неё включён исторический материал. То есть, на данном этапе урока прослеживается межпредметная связь с историей.
При проведении исследования автор также уделил внимание и такому приёму активизации, как самостоятельная работа. Были выявлены следующие закономерности: в одном из 4 классах при формировании новых понятий и убеждений учитель применял приёмы активизации. Поэтому результаты самостоятельной работы показали уровень усвоения знаний в полной мере. Материал усвоен. По - другому обстояло дело в 4 “Б” классе.
Класс | Количество учащихся | Задание | Выполнено верно | Допущено ошибок | ||
В рассужде- ниях | В вычисле- ниях | В наименова- ниях | ||||
4 “А” | 25 | 1 | 19 | 6 | 1 | 1 |
2 | 21 | 4 | 2 | |||
4 “Б” | 23 | 1 | 14 | 5 | 6 | 3 |
2 | 12 | 4 | 7 | 4 |
Проведя исследовательскую работу, выявляющую значение каждого приёма активизации при изучении нумерации многозначных чисел, можно сделать следующий вывод: немалую роль в повышении у учащихся интереса к изучению данного материала играет наглядность, применяемая для прочного усвоения учащимися как устной, так и письменной нумерации. Следует отметить также такие приёмы: дидактическая игра, тесты, математические диктанты. Перечисленные выше приёмы активизации позволяют учителю проверить ранее изученный материал, не затрачивая на это много времени.
Можно сказать, что приёмы активизации не только повышают у учащихся интерес к обучению математике, но и помогают усвоить более трудный материал.
5.1. Система уроков с применением приёмов активизации
Фрагмент урока № 1
Тема: “Чтение чисел до 1000000”.
Цель: 1) научить учащихся читать числа, записанные в таблице разрядов;
2) дать понятие и познакомить с терминами “единицы первого (второго, третьего) разряда”;
3) развивать логическое мышление, память, внимание, вычислительные навыки.
Оборудование: таблица разрядов, таблица к устному счёту.
Тип: комбинированный.
Вид: смешанный.
Ход урока.
I. Инициация (1 мин).
II. Сообщение темы и целей урока (1 мин).
III. Домашнее задание (1 мин).
IV. Актуализация ранее изученного (7 мин).
1. Устный счёт.
а) Вставь нужную цифру.
+ ? 5 4 2 + ? 2 ? 2 - 5 ? 6 ? - 4 ? 6 1
1 ? 4 ? 2 ? 3 ? ? 5 ? 4 ? 7 ? ?
5 0 ? 7 5 6 9 9 3 5 2 5 1 6 5 1
· Какое число нужно прибавить к 2, чтобы получилось 7? (5) . Значит, какую цифру вставим? (5).
· Чему равна сумма 4 и 4? (8). Какую цифру вставим вместо (?) ? (8).
· Сумма, какого числа и 5 равна 10? (5). Значит, вставим 5.
· Какую цифру вставим? (3).
· Почему? (Сумма 3 и 1 равна 4, да ещё 1 запоминали, будет 5).
· Прочитайте ответ. (Сумма 3542 и 1545 равна 5087).
· Следующая сумма.
· Сумма, какого числа и 2 равна 9 (7, значит, вставим 7)
· Какое число нужно прибавить к 3, чтобы получить 9? (6)
· Какую цифру вставим? (6)
(Чтобы получилось 6, нужно к 2 прибавить 4, вставляем цифру 4. Для того чтобы получить 5, к 2 прибавляем 3. Читаю ответ: сумма 3262 и 2437 равна 5699)
· Из какого числа нужно вычесть 4, чтобы получить 5? (из 9)
· Значит, какую цифру вставим ? (9)
Чтобы получить 2, нужно из 6 вычесть 4. Значит, вставляем цифру 4. Из 10 вычитаем 5, получаем 5. Значит, вставляем 0 и 1 тыс. занимаем у 5 тыс. Из 4 вычитаем 1, получаем 3. Читаю ответ: разность 5069 и 1544 равна 3525).
Следующая разность чисел.
Объясняет ученик: “Из 1 вычитаем 0, получаем 1, значит, вставляем 0. Чтобы получить 5, нужно из 6 вычесть 1. Значит, вставляем цифру 1. Для того чтобы получить 6, из 13 вычитаем 7, вставляем цифру 3. У 4 тыс. занимаем 1, из 3 вычитаем 2, получаем 1. Читаю ответ: разность 4361 и 2710 равна 1651”
б) Заменить числа суммой разрядных слагаемых:
240000 , 307000 , 68000 , 190000 .
в) верно ли решён пример. Поставьте скобки, чтобы запись стала верной:
32 . 2 - 2 = 0 45 : 3 - 2 = 45
68 -13 . 5 = 3 72 : 9 - 8 =0
(Ученик выходит к доске и выполняет задание)
V.Формирование новых понятий и убеждений (12 мин)
VI. Применение полученных знаний на практике (17 мин)
VII. Рефлексия (1 мин.)
Фрагмент урока №2
Тема: “Запись чисел до 1000000”.
Цель: 1) познакомить учащихся с записью чисел в таблице разрядов;
2) развивать логическое мышление, внимание, память, вычислительные навыки;
3) воспитывать дисциплинированность.
Оборудование: таблица к устному счёту.
Тип: комбинированный.
Вид: смешанный.
Ход урока.
I. Инициация (1 мин).
II. Сообщение темы и целей урока (1 мин).
III. Домашнее задание (1 мин).
IV. Актуализация ранее изученного (10 мин).
... пособий в процессе изучения чисел первого десятка нами был проведен формирующий этап эксперимента, о котором пойдет речь в следующем параграфе. 2.2 Организация работы по использованию наглядных пособий в процессе изучения чисел первого десятка Одним из центральных понятий начального курса математики является понятие натурального числа. Оно трактуется как количественная характеристика класса ...
... росту. Существует определенная взаимосвязь проблем воспитания познавательного интереса и развития мышления в процессе обучения математике. Глава II Развитие познавательного интереса к урокам математики младших школьников средствами использования занимательных дидактических игр 2.1 Дидактические игры, их виды В отличие от других видов деятельности игра содержит цель в самой себе; ...
... . Нужно учитывать индивидуальные особенности детей, проводить физкультминутки, чтобы снять утомление. Глава 2. Методика развития математических способностей младших школьников в классах коррекции. 1.Особенности структурирования математического материала в классах коррекции. На изучение математики в учебном плане начальной школы отводится четвёртая часть всего времени. Также, ...
... , неуверенностью в выполнении дозированных движений, снижением скорости и ловкости выполнения. Наибольшие трудности выявляются при выполнении движений по словесной инструкции. Дети c общим недоразвитием речи отстают от нормально развивающихся сверстников в воспроизведении двигательного задания по пространственно-временным параметрам, нарушают последовательность элементов действия, опускают его ...
0 комментариев