1.4 Динамический расчет дифференциального привода

Уравнение движения поршня дифференциального привода имеет вид:

 Р, (1.23)

где  - масса поршня;

Р1 – сила вредного сопротивления (трения);

Р2 – сила полезного сопротивления

Р - результирующая всех сил, приложенных к поршню;

; (1.24)

; (1.25)

; (1.26)

. (1.27)

Рассмотрим обратный ход поршня. Уравнение его движения при обратном ходе, когда поршневая полость 2 соединяется с атмосферой имеет вид:

 Р, (1.28)

Р = Р1 + Р2 + Рз + Ра (Р1 - Р2),


2. Разработка математической модели объекта

На основании дифференциальных уравнений, которые описывают поведение пневмоцилиндра в процессе работы, была составлена динамическая модель пневмоцилиндра. Далее выполняем моделирование (исследование) составленной модели. Нагружаем модель единичным ступенчатым воздействием, который воздействует на поршневую полость.

Таблица 1 Обозначения переменных, используемых в дин.модели

Описание Обознач. В схеме Ед.
Давление в поршневой полости пневмоцилиндра

P1

P1 Па
Давление в поршневой полости пневмоцилиндра

P2

P2 Па
Начальная координата поршня

Х01

Х01 м
Начальный объем рабочей полости

V01

V01

м3

Площадь поршня

F1

F1

м2

Давление в магистрали

PM

Pm Па
Газовая постоянная R R
Температура воздуха в магистрали

TM

Tm К
Показатель адиабаты

Коэффициент расхода

My1
Площадь входного отверстия

f1

f1

м2

Функция расхода

Fi1
Коэффициент расхода

My2
Площадь входного отверстия

f2

f2

м2

Площадь поршня со стороны штоковой части

F2

F2

м2

Рабочий ход s s м
Конечная координата поршня

Х02

Х02 м
Перемещение поршня

Х

Х м

Давление в штоковой полости Р2 находится с помощью давления Р1:


Рисунок 2.1 – Подсистема для уравнения нахождения Р2.

Представим каждое уравнение динамической модели в виде схемы:

Рисунок 2.2 – Подсистема для уравнения .

Рисунок 2.3 - Подсистема для уравнения .

Окончательная схема приведена на рисунке 2.4:

Рисунок 2.4 – Схема, описывающая поведение объекта.

Исходные данные:

P1=0,0010 Pakt=0,003 Ftr=0.15 S=0,2 x01=0,01 k=1,4 My1=0.9

f1=0,5 K=14 R=278 Tm=290 F1=0,6 Pm=3 Fi1=0,5282

x02=0,1 My2=0.9 f2=0,5 F2=0,6 F,2=0.5282

Графики, которые были получены:

Рsum – поведение силы


Рисунок 2.5 – График изменения суммарных сил, действующих в поршне, от воздействия силы изменяющейся ступенчато

Перемещение поршня

Рисунок 2.6 – График, показывающий перемещение пневмоцилиндра от воздействия всех факторов



Информация о работе «Моделирование динамических процессов в пневмоцилиндре»
Раздел: Промышленность, производство
Количество знаков с пробелами: 23195
Количество таблиц: 1
Количество изображений: 16

Похожие работы

Скачать
36512
36
11

... : . (32) Производную (32) следует рассматривать как частную производную функции ряда переменных  , одной из переменных - усилию в рулевом приводе автомобиля: . (33) Усилие в рулевом приводе, являющееся основной характеристикой рабочих процессов, в момент измерения критерия качества РП можно считать единственной переменной величиной, рассматривая остальные факторы постоянными, в ...

Скачать
141963
30
31

... 13.2 Идентификация опасных и вредных производственных факторов Проанализируем все опасные и вредные производственные факторы, которые могут возникнуть при выполнении технологических операций на участке изготовления червяка и внесем их в таблицу 13.2 Таблица 13.2 Опасные и вредные производственные факторы № п/п Наименование опасного и вредного производственного фактора Виды работ, ...

Скачать
23869
5
25

... двигателя и добиваемся его реализации путем изменения числа зубьев в приводе, сохраняя при этом общее число зубьев в сумме. На рисунке 1 приведена принципиальная кинематическая схема привода главного движения станка с учетом индивидуального задания, согласно которому общее передаточное отношение . Рисунок 1 – Кинематическая схема привода 1.1.2 Выбор двигателя Для выбора двигателя ...

Скачать
155526
18
13

... ситуациям. В связи с этим в настоящее время можно выделить две основные проблемы, связанные с совершенствованием автодромной подготовки водителей: -       выбор рациональной конфигурации трассы автодрома и её параметров, исходя из конкретных задач обучения; -       разработка технического оборудования автодромов, позволяющего моделировать различные дорожно-транспортные ситуации, в том числе и ...

0 комментариев


Наверх