2.2 Расчёт местных потерь напора
Помимо потерь напора на трение, которые имеют место по всей длине трубопровода, при движении жидкостей и газов возникают потери напора в местах локальных возмущений потока, вызванных разного рода изменениями в направлении движения жидкости, изменениями сечения, наличием преград на пути движения и т.д.. Эти потери носят название местных потерь напора, а причины, их вызывающие, называются местными сопротивлениями.
Практически величина местных потерь прямо пропорциональна динамическому напору в данном сечении потока:
;(8)
где - коэффициент местного сопротивления, характеризующий данное сопротивление.
Общие потери напора в трубопроводе, включая потери на трение и местные потери, находят суммированием:
;(9)
где - сумма потерь напора на всех местных сопротивлениях на данном трубопроводе; - суммарный коэффициент местных сопротивлений.
2.3 Построение характеристики сети
Для трубопроводов, состоящих из часто употребляемых стандартных труб, расчёт потерь напора удобно вести с помощью обобщённых параметров трубопровода. Рассмотрим простой короткий трубопровод постоянного диаметра. Общие потери напора в нём, определяемые формулой (9), можно выразить через расход жидкости :
(10)
Сделаем замену в этом выражении:
;(11)
где b – сопротивление трубопровода.
Из выражений (10) и (11) получаем:
(12)
Из этого выражения видно, что для данного трубопровода зависимость потерь от расхода графически выражается параболой.
При последовательном соединении трубопроводов разного диаметра общие потери напора соединения равны сумме потерь в отдельных трубопроводах, расход же жидкости по всей длине соединения одинаков и равен расходу в отдельном трубопроводе:
;(13)
где - сопротивление всего соединения.
Расходы жидкости в отдельных ветвях параллельного соединения различны и определяются сопротивлением ветвей. Общий расход в соединении равен сумме расходов ветвей. В этом случае из выражения (12) получаем:
; (14)
Рассмотрим общий случай: трубопровод, в котором по пути движения жидкость совершает работу или над ней совершается работа. Полный напор жидкости в начальном и конечном сечениях трубопровода соответственно:
; ,
а приращение полного напора в трубопроводе
;(15)
где - геометрическая высота подачи жидкости.
Выражение для удельной энергии Н, которую надо затратить на приращение полного напора жидкости в трубопроводе и преодоление в нём потерь напора, носит название уравнения сети, а величина Н – полный потребный напор трубопровода.
; (16)
Преобразуем это выражение, введя обозначение
; (17)
; (18)
Учитывая выражение получим:
; (19)
где а, b и с константы для данной сети.
Выражение (19) является уравнением напорной характеристики трубопровода. Оно устанавливает связь между потребным напором и расходом жидкости в сети.[2]
... заданного режима водопотребления данной сетью. Напорная характеристика данной сети приведена на графике. Расчет потерь тепла Мы имеем: толщину задней стенки кессона равную коэффициент теплопроводности стенки , температуру воды внутри системы охлаждения при её работе равную t=50ºC, температуру окружающей среды t=10ºC. Учитывая эти и другие значения находим потери тепла в окружающую ...
... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...
... 5000 мг/л. Наличие этих загрязнений препятствует повторному использованию сточных вод, а их сброс ведёт к загрязнению водоёма [17]. 11.3.2 Мероприятий по защите окружающей среды Технологические процессы литейного производства сопровождаются образованием огромных количеств различных пылей и газов, которые загрязняют атмосферу. Отвалы отработанных смесей и неочищенные сточные воды, сбрасываемые ...
... или технологических процессов; – при выборе технического решения обеспечить малоотходность производства и максимальную эффективность использования энергоресурсов. Задачи специалиста в области безопасности жизнедеятельности сводятся к следующему; – контроль и поддержание допустимых условий (параметры микроклимата, освещение и др.) жизнедеятельности человека в техносфере; – идентификация ...
0 комментариев