3.2 Определение нагрузок, действующих на вал
Составление расчетных схем
Основными нагрузками на вал являются усилия в зубчатых зацеплениях, натяжение ветвей цепи, а также крутящие моменты. Собственный вес вала и насаженных на нем деталей в большинстве случаев не учитывается.
Силы, действующие в передачах, определяются следующим образом [3, с.12]:
Для прямозубой цилиндрической передачи (3)
· Окружная сила
· Радиальная сила
Для косозубой цилиндрической передачи (2)
· Окружная сила
· Радиальная сила
· Осевая сила
Рассмотрим 1 схему
При проверке
Рассмотрим 2 схему:
При проверке
Находим RА иRВ
Рис. 3.2 Эпюры изгибающих моментов
3.3 Расчет вала на усталость
Этот расчет вала выполняется как проверочный. Он заключается в определении расчетных коэффициентов запасов прочности в предположительно опасных сечениях предварительно намеченных в соответствии с эпюрами моментов и расположением зон концентрации напряжений [3, с. 18]
Для первого опасного сечения
Для второго опасного сечения
3.4 Расчет на выносливость
Согласно с [3, с.18-20]
Расчет ведем в опасном сечении 2 (под шпонкой)
Коэффициенты запаса усталостной прочности по нормальным и касательным напряжениям:
3.5 Шпоночное соединение
Из известных способов соединения деталей с валом наибольшее распространение имеет соединение с помощью врезных призматических шпонок.
Рис.3.3 Основные размеры соединения с призматической шпонкой
Размеры поперечного сечения шпонки выбираются в зависимости от диаметра вала. Длина шпонки принимается на 5…10 мм меньше длины ступицы насаживаемой детали и выбирается из ряда стандартных значений. Выбранная шпонка проверяется на смятие
Размеры шпонок определяем по [3, с.26, табл.12]
Таблица 12
Вал 2 | Вал 3 | Вал 4 | ||
b | 14 | 20 | 25 | мм |
h | 9 | 12 | 14 | мм |
t1 | 5,5 | 7,5 | 9 | мм |
t2 | 3,8 | 4,9 | 5,4 | мм |
lp | 40 | 63 | 75 | мм |
sigmaSM | 98 | 106,1728 | 102,3256 | МПа |
d вала | 50 | 75 | 86 | мм |
T | 441 | 1505 | 2310 | Нм |
100…120 | Мпа | |||
sigmaSM | < |
Расчет производился с помощью модуля автоматизированного проектирования шпоночных соединений на основе проверки на смятие.
4 Проектирование узлов подшипников качения
4.1 Выбор подшипников качения. Расчет их долговечности
Для третьего вала выбираем: подшипник 7314А ГОСТ 27365-87
Основные параметры:
d = 70 мм
D = 150 мм
Сдин = 110 кН
е = 0.39
Y = 1.55
Рис. 4Подшипник роликовый радиально – упорный
... с односторонним расположением губок для измерения наружных и внутренних размеров. При измерении поверхности микрометра приводятся в соприкосновение с поверхностями изделия. За результат измерения принимается алгебраическая сумма отсчетов по шкалам микрометра. 7.2 Расчет размеров калибров для гладкого цилиндрического соединения Калибры применяют не для определения числового значения ...
... *0,72*0,992=3,764 кВт; Р4=Р3 η3=5,124*0,95=3,576 кВт, что близко к заданному. Определяем вращающие моменты на каждом валу привода по формуле (Нм) (2.5) ; ; ; . Все рассчитанные параметры сводим в табл.1. Таблица 1 Параметры кинематического расчета № вала n, об/мин ω, рад/с Р, кВт Т, Нм U Дв. (1) 1444,5 151,27 5,5 36,35 2 ...
... = 60 ґ n ґ Lh / 106 L = 60 ґ 1435 ґ 100000 / 106 = 861 7.1.9. Определяю расчетную динамику подшипника c = PIIпр3.3 z c = 1222.16 3.3 861 = 9473.77 Основные характеристики принятого подшипника: Подшипник № 36205 d = 25мм D = 52мм C = 16700H = 15мм r = 1.5мм C0 = 9100H n = 13000 об/мин 7.2. Проектный расчет второго вала редуктора и подбор подшипников d2 = c 3 ...
... w и Т заносятся в таблицу 3.1. Примечание. Для одноступенчатого редуктора крутящий момент определяется по формуле , [Н·м]; , [Н·м]; [Н·м]; , [Н·м]. [Н·м]. Расчет клиноременной передачи Расчет клиноременной передачи проводим исходя из ранее рассчитанной мощности электродвигателя, Рэд и принятого передаточного отношения клиноременной передачи iр.п.=2. Определение сечения ремня ...
0 комментариев