2.2 Расчет быстроходной ступени редуктора

Выбор термической обработки заготовок

Для уменьшения сортамента материала, применяемого при изготовлении редуктора, для изготовления зубчатых колес быстроходной ступени редуктора применяем ту же сталь, что и тихоходной ступени редуктора, а именно сталь 12ХН3А с цементацией после улучшения и закалки.

Определение механических свойств материалов зубчатых колес и допускаемых напряжений

1)  Средние значения твердостей зубьев:

 (см. выше)

2)  Предельные характеристики материалов:

sВ = 1000 МПа, sТ = 800 МПа (см. табл. 2.2, [1]).

3)  Допускаемые напряжения для расчета передачи на контактную выносливость:

(см. табл. 2.5, [1]).

В этих формулах:

sОН – длительный предел контактной выносливости

 МПа (см. табл. 2.6, [1]);

SН – коэффициент безопасности, SН = 1,2 (см. табл. 2.6, [1]).

Тогда:

 МПа.

NНО – число циклов перемены напряжений, соответствующее длительному пределу выносливости; NНО = 200×106 (рис. 2.1, [1]);

NНЕ – эквивалентное число циклов перемены напряжений для расчета на контактную выносливость:

КНЕ – коэффициент приведение; при тяжелом режиме работы КНЕ = 0,5 (табл. 2.4, [1]);

NS – суммарное число циклов перемены напряжений

где ni – частота вращения i-го зубчатого колеса.

Для шестерни: NS1 = 60×21600×490 = 635×106 циклов

Для колеса: NS2 = 60×21600×122,5 = 158,8×106 циклов

Таким образом,

 циклов

 циклов

Так как NНЕ1 > NНО, то и NНЕ1 = NНО = 200×106, и тогда:

 МПа

 МПа

В качестве  принимаем меньшее из  и , т.е.  = 1330 МПа.

 МПа.

Условие < выполняется.

4)  Допускаемое напряжение для расчета передачи на изгибную выносливость:

(см. табл. 2.5, [1]).

В этих формулах:

sОF – длительный предел изгибной выносливости

 МПа (см. табл. 2.6, [1]);

SF – коэффициент безопасности, SF = 1,55 (см. табл. 2.6, [1]).

Тогда:

 МПа.

N – эквивалентное число циклов перемены напряжений для расчета на изгибную выносливость:

К – коэффициент приведение; при тяжелом режиме работы К = 0,2 (табл. 2.4, [1]);

Таким образом,

Для шестерни:  циклов

Для колеса:  циклов

Так как NFЕ1 > 4×106 циклов и NFЕ2 > 4×106 циклов, то принимаем NFЕ1 = NFЕ2 = 4×106 циклов.

Тогда:

 МПа

Так как  МПа (табл. 2.6, [1]), то условие < выполняется.

Определение коэффициента нагрузки

1)  Определяем коэффициент ширины быстроходной ступени по формуле:

где U – передаточное число быстроходной ступени, U = 4;

аw – межосевое расстояние, полученное при расчете тихоходной ступени, аw = 100 мм;

КН – коэффициент концентрации нагрузки при расчете на контактную выносливость. По рекомендациям на с. 21 ([1]), КН = 1,75;

Т2 – крутящий момент на валу шестерни быстроходной ступени, Т2 = 110 Н×м.

Подставляя значения в формулу, получаем:

Принимаем yba = 0,2 (см. рекомендации с. 26, [1]).

Коэффициент нагрузки на изгибную выносливость принимаем по рекомендациям на с. 24 ([1]) КF = 1,8.

Проектирование зубчатой передачи

1)  Межосевое расстояние получаем из расчета тихоходной ступени редуктора:

аw = 100 мм.

2)  Определение рабочей ширины зубчатых колес.

Рабочая ширина колеса:  мм. По ГОСТ 6636–69 принимаем b2 = 20 мм.

Ширина шестерни: b1 = b2 + (2…4) = 20 + 2 = 22 мм (в соответствии с ГОСТ 6636–69).

3)  Определение ориентировочного значения модуля производим по формуле:

m = (0,01…0,02)×аw = 1,0…2,0 мм.

По табл. 3.3 (с. 22, [1]) принимаем m = 2 мм.

4)  Суммарное число зубьев:

5)  Число зубьев зубчатых колес:

шестерни , принимаем z1 = 20

колеса  = 100 – 20 = 80

6)  Определяем фактическое значение передаточного числа:

Проверка зубьев на выносливость при изгибе

1)  Проверка колеса на выносливость при изгибе производится по формуле:


где YF2 – коэффициент, учитывающий форму зуба колеса.

По табл. 3.4 (с. 25, [1]) для несмещенных колес YF2 = 3,6.

Тогда:

 МПа <  МПа

2)  Напряжение в опасном сечении зуба шестерни:

где YF1 – коэффициент, учитывающий форму зуба шестерни.

По табл. 3.4 (с. 25, [1]) для несмещенных колес YF1 = 3,9.

Тогда:

 МПа <  МПа

Определение основных параметров зубчатого зацепления

1)  Диаметры делительных окружностей:

 мм

 мм

Проверка:  мм – равенство выполняется.

2)  Диаметры окружностей вершин:

 мм

 мм

3)  Диаметры окружностей впадин:


 мм

 мм

Силы, действующие в зацеплении

1)  Окружная сила:

 Н

2)  Радиальная сила:

 Н



Информация о работе «Редуктор двухступенчатый соосный»
Раздел: Промышленность, производство
Количество знаков с пробелами: 28236
Количество таблиц: 1
Количество изображений: 1

Похожие работы

Скачать
26927
8
11

... 281 59,4 -79% σF2 257 55 -78%   4 Расчет быстроходной ступени привода Межосевое расстояние для быстроходной ступени с учетом того, что редуктор соосный и двухпоточный, определяем половину расстояния тихоходной ступени: а=d2-d1; а=84-14=70мм. Из условия (3.2) принимаем модуль mn=1,5мм Определяем суммарное число зубьев по формуле (3.12) [1,c.36]:  zΣ=2а/mn; z&# ...

Скачать
27067
7
11

... 281 59,4 -79% σF2 257 55 -78% 4. Расчет быстроходной ступени привода Межосевое расстояние для быстроходной ступени с учетом того, что редуктор соосный и двухпоточный, определяем половину расстояния тихоходной ступени: а=d2-d1; а=84-14=70мм. Из условия (3.2) принимаем модуль mn=1,5мм Определяем суммарное число зубьев по формуле (3.12) [1,c.36]: zΣ=2а/mn; ...

Скачать
43940
3
5

... a2= m(z1+z2)/2= 0,3(24+49)/2= 10,95 a3= m(z1+z2)/2= 0,3(24+54)/2= 11,7 a4= m(z1+z2)/2= 0,3(24+55)/2= 11,85 a5= m(z1+z2)/2= 0,3(24+68)/2= 13,8 Определим ширину венца: b= (3…15)m= 10·0,3= 3 Определим высоту зуба: h= 2,5m= 2,5·0,3= 0,75 5. Разработка конструкций редуктора Разработка конструкции состоит в расчете и выборе его элементов: зубчатые колеса, валы, подшипники и корпуса. ...

Скачать
58630
7
21

... V,м/с Тип 200 315 391,5 45 17 138 1600 163,3 2057 149,7 10,15 прорезиненный ремень 4. Расчёт и конструирование редуктора Тип редуктора - цилиндрический двухступенчатый соосный. Быстроходная (первая) ступень редуктора - цилиндрическая с косозубыми колесами, тихоходная (вторая) - с прямозубыми. 4.1 Материалы зубчатых колес Основным материалом для изготовления зубчатых колес ...

0 комментариев


Наверх