5. Проверочный расчет промежуточного вала
5.1 Определение опорных реакций
Определение опорных реакций в подшипниках начинаем с определения расчетной схемы вала. Для этого вычерчиваем в масштабе вал и прикладываем к нему окружные и радиальные силы в середине ступиц зубчатых колес (рис. 3). Точки приложения реакций опор– в середине посадочных мест под подшипники.
Крутящий момент передается валом в пространстве между серединами посадочных мест под зубчатые колеса и составляет Мкр = 110 Н×м. Строим эпюру крутящих моментов (см. рис. 3).
Определение реакций в подшипниках от действия окружных сил и построение эпюры моментов от действия этих сил
Согласно проектным расчетам зубчатых зацеплений, на промежуточный вал действуют следующие окружные силы:
– от быстроходной передачи Ft Б = 1375 Н;
– от тихоходной передачи Ft Т = 4827 Н.
Расчетная схема приведена на рис. 3.
Составляем уравнения статики:
Н
Н
Проверка:
– реакции определены правильно.
Строим эпюру моментов Му (см. рис. 3).
Определение реакций в подшипниках от действия радиальных сил и построение эпюры моментов от действия этих сил
Согласно проектным расчетам зубчатых зацеплений, на промежуточный вал действуют следующие радиальные силы:
– от быстроходной передачи Fr Б = 500,5 Н;
– от тихоходной передачи Fr Т = 1757 Н.
Расчетная схема приведена на рис. 3.
Составляем уравнения статики:
Н
Н
Проверка:
– реакции определены правильно.
Строим эпюру моментов Мz (см. рис. 3).
5.2 Проверочный расчет подшипников
При проектировочном расчете валов на промежуточном валу мы приняли шариковые радиальные однорядные подшипники средней серии №306 по ГОСТ 8338–75 с динамической грузоподъемностью С = 28100 Н и статической грузоподъемностью С0 = 14600 Н.
Подшипник в опоре В нагружен большими силами, поэтому проверочный расчет выполняем для него.
Радиальную силу в подшипнике определим по формуле:
Н
Для радиальных шарикоподшипников величину эквивалентной нагрузки определяем по формуле:
где X и Y – коэффициенты отношения осевой нагрузки к радиальной, в нашем случае Fа = 0, и Y = 0, Х = 1;
V – коэффициент вращения, V = 1 (т. к. вращается внутреннее кольцо);
Кб – коэффициент безопасности, по табл. 9.4 (с. 72, [1]) выбираем Кб = 1,3;
Кт – температурный коэффициент, при рабочей температуре подшипниковых узлов < 100°С Кт = 1.
Тогда:
Н
Номинальную долговечность вычисляем по формуле:
, млн. об.
где m = 3 для шарикоподшипников. Тогда:
млн. об.
Долговечность подшипника в часах:
ч ³ tS = 21600 ч
Подшипники подобраны правильно.
... 281 59,4 -79% σF2 257 55 -78% 4 Расчет быстроходной ступени привода Межосевое расстояние для быстроходной ступени с учетом того, что редуктор соосный и двухпоточный, определяем половину расстояния тихоходной ступени: а=d2-d1; а=84-14=70мм. Из условия (3.2) принимаем модуль mn=1,5мм Определяем суммарное число зубьев по формуле (3.12) [1,c.36]: zΣ=2а/mn; z ...
... 281 59,4 -79% σF2 257 55 -78% 4. Расчет быстроходной ступени привода Межосевое расстояние для быстроходной ступени с учетом того, что редуктор соосный и двухпоточный, определяем половину расстояния тихоходной ступени: а=d2-d1; а=84-14=70мм. Из условия (3.2) принимаем модуль mn=1,5мм Определяем суммарное число зубьев по формуле (3.12) [1,c.36]: zΣ=2а/mn; ...
... a2= m(z1+z2)/2= 0,3(24+49)/2= 10,95 a3= m(z1+z2)/2= 0,3(24+54)/2= 11,7 a4= m(z1+z2)/2= 0,3(24+55)/2= 11,85 a5= m(z1+z2)/2= 0,3(24+68)/2= 13,8 Определим ширину венца: b= (3…15)m= 10·0,3= 3 Определим высоту зуба: h= 2,5m= 2,5·0,3= 0,75 5. Разработка конструкций редуктора Разработка конструкции состоит в расчете и выборе его элементов: зубчатые колеса, валы, подшипники и корпуса. ...
... V,м/с Тип 200 315 391,5 45 17 138 1600 163,3 2057 149,7 10,15 прорезиненный ремень 4. Расчёт и конструирование редуктора Тип редуктора - цилиндрический двухступенчатый соосный. Быстроходная (первая) ступень редуктора - цилиндрическая с косозубыми колесами, тихоходная (вторая) - с прямозубыми. 4.1 Материалы зубчатых колес Основным материалом для изготовления зубчатых колес ...
0 комментариев