2.2.2. Тестовый пример.

4,1x1 + 0,1x2 + 0,2x3 + 0,2x4 = 21,14 ,

0,3x1 + 5,3x2 + 0,9x3 – 0,1x4 = – 17,82 ,

0,2x1 + 0,3x2 + 3,2x3 + 0,2x4 = 9,02 ,

0,1x1 + 0,1x2 + 0,2x3 – 9,1x4 = 17,08 ,

x1 = 5,2, x2 = –4,2, x3 = 3, x4 = –1,8.

2.2.3. Описание алгоритма. В переменную n вводится порядок матрицы системы, в переменную e – максимальная абсолютная погрешность. С помощью вспомогательной процедуры ReadSystem в двумерный массив a и одномерный массив b вводится c клавиатуры расширенная матрица системы. Начальное прибижение предполагается равным нулю. Оба массива и переменные n и e передаются функции Seidel. В функции Seidel исследуется сходимость системы, и в том случае если система не сходится, выполнение функции прекращается с результатом false. В ходе каждой итерации вычисляется новое приближение и и абсолютная погрешность. Когда полученная погрешность становится меньше заданной, выполнение функции прекращается. Полученное решение выводится на экран при помощи вспомогательной процедуры WriteX.

2.2.4. Листинг программы и результаты работы.

Uses CRT;

Const

maxn = 10;

Type

Data = Real;

Matrix = Array[1..maxn, 1..maxn] of Data;

Vector = Array[1..maxn] of Data;

{ Процедура ввода расширенной матрицы системы }

Procedure ReadSystem(n: Integer; var a: Matrix; var b: Vector);

Var

i, j, r: Integer;

Begin

r := WhereY;

GotoXY(2, r);

Write('A');

For i := 1 to n do begin

GotoXY(i * 6 + 2, r);

Write(i);

GotoXY(1, r + i + 1);

Write(i:2);

end;

GotoXY((n + 1) * 6 + 2, r);

Write('b');

For i := 1 to n do begin

For j := 1 to n do begin

GotoXY(j * 6 + 2, r + i + 1);

Read(a[i, j]);

end;

GotoXY((n + 1) * 6 + 2, r + i + 1);

Read(b[i]);

end;

End;

{ Процедура вывода результатов }

Procedure WriteX(n :Integer; x: Vector);

Var

i: Integer;

Begin

For i := 1 to n do

Writeln('x', i, ' = ', x[i]);

End;

{ Функция, реализующая метод Зейделя }

Function Seidel(n: Integer; a: Matrix; b: Vector; var x: Vector; e: Data) :Boolean;

Var

i, j: Integer;

s1, s2, s, v, m: Data;

Begin

{ Исследуем сходимость }

For i := 1 to n do begin

s := 0;

For j := 1 to n do

If j <> i then

s := s + Abs(a[i, j]);

If s >= Abs(a[i, i]) then begin

Seidel := false;

Exit;

end;

end;

Repeat

m := 0;

For i := 1 to n do begin

{ Вычисляем суммы }

s1 := 0;

s2 := 0;

For j := 1 to i - 1 do

s1 := s1 + a[i, j] * x[j];

For j := i to n do

s2 := s2 + a[i, j] * x[j];

{ Вычисляем новое приближение и погрешность }

v := x[i];

x[i] := x[i] - (1 / a[i, i]) * (s1 + s2 - b[i]);

If Abs(v - x[i]) > m then

m := Abs(v - x[i]);

end;

Until m < e;

Seidel := true;

End;

Var

n, i: Integer;

a: Matrix;

b, x: Vector;

e: Data;

Begin

ClrScr;

Writeln('Программа решения систем линейных уравнений по методу Зейделя');

Writeln;

Writeln('Введите порядок матрицы системы (макс. 10)');

Repeat

Write('>');

Read(n);

Until (n > 0) and (n <= maxn);

Writeln;

Writeln('Введите точность вычислений');

Repeat

Write('>');

Read(e);

Until (e > 0) and (e < 1);

Writeln;

Writeln('Введите расширенную матрицу системы');

ReadSystem(n, a, b);

Writeln;

{ Предполагаем начальное приближение равным нулю }

For i := 1 to n do

x[i] := 0;

If Seidel(n, a, b, x, e) then begin

Writeln('Результат вычислений по методу Зейделя');

WriteX(n, x);

end

else

Writeln('Метод Зейделя не сходится для данной системы');

Writeln;

End.

Программа решения систем линейных уравнений по методу Зейделя

Введите порядок матрицы системы (макс. 10)

>4

Введите точность вычислений

>.000001

Введите расширенную матрицу системы

 A 1 2 3 4 b

 1 4.1 0.1 0.2 0.2 21.14

 2 0.3 5.3 0.9  -0.1 -17.82

 3 0.2 0.3 3.2 0.2 9.02

 4 0.1 0.1 0.2 -9.1 17.08

Результат вычислений по методу Зейделя

x1 = 5.2000000008E+00

x2 = -4.2000000028E+00

x3 = 3.0000000003E+00

x4 = -1.8000000000E+00

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.ed.vseved.ru/


Информация о работе «Решение систем линейных алгебраических уравнений»
Раздел: Математика
Количество знаков с пробелами: 20755
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
24924
0
20

... , но выбор перехода к системе x=(x) зависит от типа конкретной решаемой системы линейных алгебраических уравнений. 6. Заключение В данной курсовой работе был реализован метод простой итерации для решения систем линейных алгебраических уравнений в виде двух программ, каждая из которых использует свой собственный способ перехода от системы вида F(x)=x к системе вида x=(x). Вообще говоря, ...

Скачать
33571
2
14

... Рисунок 1.1 - Схема информационных потоков для вычисления СЛАУ методом Гаусса Условные обозначения к рисунку 2.1:  - данные, вводимые с клавиатуры  - данные, хранящиеся на диске  - данные, выводимые на экран 2. Решение систем линейных алгебраических уравнений методом гаусса 2.1 Основные понятия Система линейных алгебраических уравнений (СЛАУ) из m уравнений с n неизвестными ...

Скачать
20676
0
0

... 1.2 0.4 -0.8 -0.8 3.6 4 4.7 10.4 9.7 9.7 -8.4Результат вычислений по методу Гаусса x1 = 5.0000000000E+00 x2 = -4.0000000000E+00 x3 = 3.0000000000E+00 x4 = -2.0000000000E+00 2.2 Программа решения систем линейных уравнений по методу Зейделя 2.2.1. Постановка задачи. Требуется решить систему линейных алгебраических уравнений с вещественными коэффициентами вида a11x1 + a12x2 + … + a1nxn = ...

Скачать
11265
1
9

... линейных уравнений: Или в матричном виде: , где матрица коэффициентов системы;  - вектор неизвестных; - вектор свободных членов. 2. Точные методы решения СЛАУ Метод главных элементов. Пусть дана система линейных алгебраических уравнений. Рассмотрим расширенную матрицу, состоящую из коэффициентов системы a[i,j] и свободных членов b[i]. Метод главных элементов - это обобщение ...

0 комментариев


Наверх