1.2 Характеристика оптических кабелей связи

Оптические кабели (ОК) содержат 4, 8 и 16 волокон. Волокна классифицируются на ступенчатые, градиентные и одномодовые и используются на длинах волн 0,85. 1,3 и 1.55 мкм. Кабели могут изготовляться с металлическими элементами (оболочки, оплетки, армирующие стержни) и без них. Достоинствами ОК без металлических элементов являются существенно меньшие габаритные размеры и масса.

Выбор ОК осуществляется на основе: заданного числа каналов магистральной связи и типа аппаратуры связи; назначения кабеля.

В соответствии с заданным числом каналов магистральной связи и типом волоконно-оптической системы передачи следует определить число волокон ОК. При использовании цифровой системы - передачи ИКМ-480 для организации 400 двусторонних каналов связи необходимо два волокна в ОК: одно - для организации 400 каналов связи в прямом, а другое - в обратном направлении.

Исходя из типа системы передачи, типа оптического волокна и значения рабочей длины волны (λ, мкм), (см. табл. 1.1), выбирается марка кабеля: ОЗКГ- линейный оптический многомодовый градиентный зоновый кабель с броней из круглых проволок для прокладки в грунт с оптическим волокном на длину волны 1,3 мкм.

Маркировка оптического кабеля связи может быть записана условно в следующем виде:

ОЗКГ-1-0.7-4/4

где 1 - номер разработки конструкции данного типа оптического кабеля;

0.7-максимальное затухание оптического волокна, дБ/км;

4 - число оптических волокон;

4 - число медных жил для дистанционного питания аппаратуры;

ОЗКГ – кабель оптический с металлическими армирующими элементами, центральным профильным элементом;

Строительная длина 2200 м, диаметр сердечника 50 мкм.

1.3 Оценка параметров световодов

Важной характеристикой световода является числовая апертура NA, представляющая собой синус максимального угла падения φпад лучей на торец световода, при котором в световоде луч на границу "сердцевина-оболочка" падает под критическим углом φкр. Если значение угла падения φпад ≥ φкр то в световоде происходит полное внутреннее отражение луча. Следовательно

NA=n1cos φкр=, (1.3.1.)

где n1 и n2 показатель преломления соответственно сердцевины и оболочки (для многомодового световода 1,53 и 1.5 соответственно).

NA==0.30

Число мод определяет способность световода "принимать" свет. Чем больше мод, тем больше световой энергии можно ввести в световод от источника. С увеличением числа мод полоса передаваемых частот снижается. Чем меньше мод, тем лучше качество связи, и можно организовать большее число каналов.

Для расчета числа мод необходимо рассчитать нормированную частоту

V=, (1.3.2)

где a - радиус сердечника световода, 50 мкм (определяется по маркировке кабеля);

λ - длина волны, 1.3 мкм;

NA - числовая апертура;

V==72.46

Общее число передаваемых мод в световодах может быть определено по формулам:

N =V2/2 - для градиентного профиля.

N=2625.23

Важнейшим параметром световода является затухание передаваемой энергии. Для заданных значений скорости передачи информации и вероятности ошибки мощность на входе фотодетектора должна быть больше некоторой определенной величины. Потери наряду с дисперсией определяют длину ретрансляционного участка волоконно-оптической, линии связи (ВОЛС), т.е. расстояние, на которое можно передавать сигнал без усиления. Данное расстояние соответствует расстоянию между ЛРП волоконно-оптической линии связи, размещенными на схеме трассы линии связи. В тех участках спектра, где существуют надежные источники излучения, световоды должны иметь минимально возможное затухание. Существуют две главные причины собственных потерь в световодах: поглощение и рассеяние энергии.

Затухание поглощения. αп связанное с потерями на диэлектрическую поляризацию, линейно растет с частотой и существенно зависит от свойств материала световода tg δ.

Расчет затухания поглощения, дБ/км:

αп, (1.3.3.)


где, λ - длина волны, м;

tg δ=10-11 - тангенс угла диэлектрических потерь в световоде.

αп=0.32 дБ/км

В этой формуле приближенное вычисление объясняется тем, что показатели преломления и тангенс диэлектрических потерь зависят от частоты, а следовательно, и от длины волны, в связи с чем не могут быть заданы постоянными величинами при расчете.

Потери на рассеяние определяют нижний предел потерь, присущих волоконным счетоводам. Потери с увеличением длины волны уменьшаются. Рассеяние обусловлено неоднородностями материала волоконного световода, размеры которых меньше длины волны, а также тепловой флуктуацией преломления.

Различают линейное и нелинейное рассеяние. При линейном рассеянии его мощность пропорциональна мощности падающей волны. В этом случае происходит частичное изменение потока энергии.

Потери на рассеяние, возникающие в результате флуктуации показателя преломления, называются рэлеевскими и определяются по формуле. дБ/км.

, (1.3.4)

где, λ - длина волны, мкм;

Rp - коэффициент рассеяния, равный для кварца 1.5 дБ/км*мкм4 для многомодового световода;


=0.53 дБ/км

Суммарное значение собственного затухания оптического волокна в общем случае

αспрпкпр, (1.3.5.)

где αпк - коэффициент затухания в инфракрасной области расположенной в диапазоне длин волн свыше 1.6 мкм (для заданных длин волн не рассчитывается);

αпр - коэффициент затухания из-за наличия в материале волоконного световода посторонних примесей, дБ/км (для многомодового световода приблизительно равен на λ=1.3 мкм – 0.1 дБ/км).

Именно из-за нелинейности потерь αпр на заданных частотах за счет резонансных явлений возникаю так называемые "окна прозрачности” световода, то есть существенное уменьшение собственного затухания оптического волокна при длинах волн 0.85, 1.3 и 1.55 мкм, поэтому передача по ОК осуществляется именно на данных длинах волн.

αс=0.1+0.53+0.32=0.95 дБ/км

Кроме собственных потерь αс надлежит учитывать также дополнительные кабельные потери αк. Они связаны с непостоянством размеров поперечного сечения волокна, наличием макро- и микроизгибов из-за скрутки, конструктивных и технологических неоднородностей и других причин. Установлено, что все кабельные потери увеличивают затухание.

Приближенно можно рассчитать. дБ/км

αк= αгв+, (1.3.6.)

где αгв - дополнительное затухание за счет геометрии волокна, (в среднем 0. 15* αс ), дБ/км;

Ам - потери на стыке оптических волокон в муфте (0.3 -на стык, дБ);

lстр - протяженность строительной длины ОК, км.

αк=0.15*0.95+0.3*50/2=7.64

Качество ввода зависит от соотношения площадей излучателя Sп и сердцевины световода Sc. Существенно качество ввода зависит и от апертуры световода (NA). т. к. только в пределах апертурного угла излучение эффективно вводится в световод. Обычно площадь излучателя больше площади сердцевины световода, поэтому не вся излучаемая энергия поступает в оптический тракт. Потери энергии на вводе, дБ,

, (1.3.7)

где m - коэффициент, и учитывается при расчете энергетического потенциала аппаратуры.

Для расчетов приняты следующие данные: Sп – 3*50 мкм для лазера; Sc=πа2 мкм, где а - радиус сердцевины световода, мкм; m=10 для лазера.

αвв=10lg (2/10*0,32*150/3,14*252) = 7,7 дБ/км

Повышение эффективности ввода излучения достигается за счет применения согласующего оптического устройства в виде увеличительной линзы (или комбинации линз), которая устанавливается между излучателем и торцом световода. Эффективность согласующих устройств можно определить по справочным данным. В современных системах волоконно-оптической передачи благодаря применению излучателей с оптимальной диаграммой направленности и правильному их согласованию со световодом потери энергии при вводе не превышают 4% от мощности источника. Поэтому, учитывая дополнительные потери в разъемных и неразъемных соединениях на стыке аппаратуры и ОК, торцевые потери


αт = q*αвв, (1.3.8.)

где q - поправочный коэффициент, равный 0,2 для многомодового световода.

αт = 0,2*7,7 =1,54 дБ/км

В световоде при передаче импульсных сигналов (отличающихся друг от друга различной мощностью) после прохождения ими некоторого расстояния световые импульсы искажаются и расширяются во времени, т. е. время подачи одного импульса увеличивается. В результате наступает такой момент, когда соседние импульсы начинают перекрывать друг друга. Данное явление в теории световодов называют дисперсией.

Расширение импульсов устанавливает предельные скорости передачи информации по световоду при импульсно-кодовой модуляции и при малых потерях ограничивает длину ретрансляционного участка. Дисперсия ограничивает пропускную способность ВОЛС, которая предопределяет полосу частот ∆F, пропускаемую световодом, ширину линейного тракта и соответственно объем информации, который можно передать по ОК

Дисперсия не только ограничивает частотный диапазон использования световодов, она существенно снижает дальность передачи по ОК, т. к. чем длиннее линия, тем больше проявляется дисперсия и больше уширение импульса. Дисперсия возникает по двум причинам: не когерентность источников излучения и появление спектра ∆λ, существование большого числа мод N. Первая называется хроматической (частотной) дисперсией, которая делится на материальную и волновую. Материальная дисперсия обусловлена зависимостью коэффициента преломления материала световода от длины волны. Волновая дисперсия обусловлена процессами внутри моды и связана со световодной структурой моды. Она характеризуется зависимостью коэффициента распространения моды от длины волны. Модовая дисперсия объясняется наличием большого числа мод каждая из которых распространяется со своей скоростью. Результирующее значение уширения импульсов за счет модовой τмод мод=1.02), материальной τмат мат=0,242) и волновой τвв вв=7.179) дисперсией.

, (1.3.10.)

=7,49*10-9 с/км

Дисперсия проявляется по-разному в различных типах волоконных световодов. В ступенчатых световодах при многомодовый передаче доминирует модовая дисперсия, достигающая значений порядка 102-107 нс/км. В градиентных световодах происходит выравнивание времени распространения различных мод, и определяющим является дисперсия материала, которая уменьшается с увеличением длины волны.

 


Информация о работе «Планирование и реализация процедуры внедрения линий связи на железнодорожном пути»
Раздел: Транспорт
Количество знаков с пробелами: 56720
Количество таблиц: 4
Количество изображений: 8

Похожие работы

Скачать
142912
21
0

... году по сравнению с 2002 годом. Комплекс мер, необходимых для улучшения ситуации в этой сфере перечислен в параграфе 3.2. 3.2 Разработка плана маркетинговой деятельности железнодорожного предприятия на 2004 год План маркетинговой деятельности предприятия на 2004 год разобьем на две части: маркетинговый план по основной деятельности предприятия (обеспечение перевозок, ремонт локомотивов) и ...

Скачать
139625
0
3

... подходы к решению широкого круга задач, относящихся, в основном, к государственному регулированию экономики. ГЛАВА 2. ПРОЕКТ «УРАЛ ПРОМЫШЛЕННЫЙ - УРАЛ ПОЛЯРНЫЙ» - ОСНОВА ПРОГРАММЫ РАЗВИТИЯ ТРАНСПОРТНОГО КОМПЛЕКСА В ТЮМЕНСКОЙ ОБЛАСТИ   2.1 Анализ программ проекта Проект «Урал Промышленный – Урал Полярный» уникален по всем параметрам. Аналогов ему в современной России нет. Проект реализуется ...

Скачать
284794
21
24

... будут являться: развитие жилищной сферы, улучшение экологической обстановки, и улучшение городской инфраструктуры, 3 Опыт и реализация стратегии социально-экономического развития муниципального образования 3.1 Применение стратегического планирования в развитии муниципального образования в Российской Федерации Российские города начали активно заниматься вопросами собственного социально- ...

Скачать
115516
5
3

... ­телями услуг федерального железнодорожного транспорта, в конечном итоге — повышение эффективности функционирова­ния экономики страны. 7. Концепция реформирования железнодорожного транспорта (1998 г.) Основное содержание социально-экономической политики России на 1999—2000 гг. заключалось и осуществлении ком­плекса широкомасштабных реформ для преодоления таких ост­рых экономических проблем, как ...

0 комментариев


Наверх