2.2 Невизначене рівняння Ферма
Розглянемо тепер рівняння вигляду
(6).
Рівняння (6) називають невизначеним рівнянням Ферма, яке має велике значення у всій теорії діофантових рівнянь. Ми доведемо, що при кожному натуральному значенні 𝐷, відмінному від повного квадрата, це рівняння має нескінченно багато розв’язків в цілих числах, і знайдемо загальний метод знаходження всіх його розв’язків.
Теорема 6.
Нехай 𝐷 – ціле додатне, вільне від квадратів число і
(
) – розв'язок діофантового рівняння (6), тоді
є чисельником і знаменником відповідно одного із підхідних дробів до
.
Доведення. Із
випливає, що
і
,

Тобто
– однин із підхідних дробів до
. Оскільки
, що задовольняють рівняння (6) є взаємно простими числами, то із рівності ![]()
випливає:
=
.
Розклад
в ланцюговий дріб в загальному виглядає так:
(7)
Виявляється, що розв’язками рівняння (6) можуть бути чисельники і знаменники тільки тих підхідних дробів
до
у яких індекс 𝑠 має вид
.
Теорема 7.
Якщо
(
) – розв'язок діофантового рівняння (6), то
, де
- підхідний дріб до
.
Доведення. В попередній теоремі було доведено, що якщо пара цілих додатних чисел
є розв’язком рівняння (6), то
=
, де
- підхідний дріб до
. Число
є коренем квадратного рівняння з цілими коефіцієнтами
. (8)
Повний частковий
розклад
в ланцюговий дріб є коренем деякого квадратного рівняння
![]()
з тим же дискримінантом, як у рівнянні (8) (при
) маємо:
;
- парне число, яке позначимо - 2
. Розв’язуючи квадратне рівняння для
,отримаємо
, тобто розклад
в ланцюговий дріб повинен мати той же період, як і в розкладі (7) числа
і відрізняється від нього тільки на перший член розладу. Це може бути тільки при
,
,
. Тепер залишається тільки вияснити, які саме з чисел
є розв’язками рівняння (6).
Теорема.
Нехай 𝐷 – ціле додатне, вільне від квадратів число, 𝑘 – довжина періоду розкладу
в ланцюговий дріб. Ми отримаємо всі розв’язки рівняння (6) в цілих додатних числах 𝑥 та 𝑦, якщо візьмемо:
![]()
де 𝑛 – довільне натуральне число, таке, що 𝑘𝑛 парне.
Доведення.
В попередній теоремі було встановлено, що всі цілі додатні розв’язки рівняння (6) знаходяться серед пар вигляду
. Залишається тільки вияснити, при яких 𝑛 числа
задовольняють рівняння (6).
врозкладі
в ланцюговий дріб має вигляд:
,
тобто
(8).
![]()
Так, що підставляючи значення
із формули (8), отримаємо:
(9)
Оскільки
- ірраціональне, із рівності (9) випливає:
![]()
![]()
Помноживши першу з цих рівностей на
, а другу на
і віднявши їх, отримаємо:
![]()
Пара
,
буде розв’язком рівняння (6) тоді і тільки тоді, коли
, тобто при парних значеннях 𝑘𝑛. Найменшими додатними значеннями
, які задовольняють рівняння Ферма (6) є:
, якщо 𝑘 парне.
, якщо 𝑘 непарне.
Приклад. 1) знайти найменші цілі додатні значення 𝑥, 𝑦, які задовольняють рівняння ![]()
Розкладаючи
в ланцюговий дріб, отримуємо:

У даному прикладі 𝑘 = 6 – парне число, тому
,
- шукані значення 𝑥 та 𝑦. Обчислюючи , знаходимо
,
.
2) знайти найменші цілі, додатні значення 𝑥, 𝑦, які задовольняють рівняння ![]()
Розкладаючи в ланцюговий дріб
отримуємо:

У цьому прикладі 𝑘=5, найменше парне 𝑘𝑛 дорівнює 10, тому шукані значення
,
. Обраховуючи, отримуємо
,
.
Аналогічно до рівняння (6) можна розв’язати рівняння
. (10)
Теореми доведені для рівняння (6) справедливі і для рівняння (10), але замість умови парності 𝑘𝑛 , треба поставити умову 𝑘𝑛 не ділиться на 2. Таким чином, при парних значеннях 𝑘 діофантове рівняння (10) не має розв’язків.
0 комментариев