2.3 Невизначене рівняння третього степеня

Сума кубів трьох цілих чисел може бути кубом четвертого числа. Наприклад,

Це означає, що куб ребро якого дорівнює 6 см, рівновеликий сумі трьох кубів, ребра яких дорівнюють 3см, 4см, 5см.

Спробуємо знайти таке ж відношення, тобто поставимо задачу: знайти розв’язки рівняння . Зручніше позначити невідоме 𝑢 через . Тоді рівняння буде мати більш простий вигляд

.

Розглянемо прийом, що дозволяє знайти безліч розв’язків цього рівняння в цілих (додатних та від’ємних)числах. Нехай 𝑎, 𝑏, 𝑐, 𝑑 та 𝛼, 𝛽, 𝛾, 𝛿 – дві четвірки чисел, що задовольняють рівняння. Додамо до чисел першої четвірки числа другої четвірки, помноженої на деяке число 𝑘, і спробуємо підібрати число 𝑘 так, щоб отримані числа

також задовольняють наше рівняння. Інакше кажучи, підберемо 𝑘 таким чином, щоб виконувалась рівність

.

Розкривши дужки і знаючи, що 𝑎, 𝑏, 𝑐, 𝑑 та 𝛼, 𝛽, 𝛾, 𝛿 задовольняють рівняння, тобто мають місце рівності

, ,

ми отримаємо:

Або

Добуто може бути нулем тоді і тільки тоді, коли є нулем принаймні один із множників. Прирівнявши кожен із множників до нуля, отримуємо два значення для 𝑘. Перше значення, 𝑘=0, нас не цікавить, бо в цьому разі отримуємо числа 𝑎, 𝑏, 𝑐, 𝑑, які задовольняють наше рівняння. Тому візьмемо інше значення для 𝑘:


Отже, знаючи дві четвірки чисел, які задовольняють початкове рівняння, можна знайти нову четвірку: для цього треба до чисел першої четвірки додати числа другої четвірки, помножені на 𝑘, де 𝑘 має вище вказане значення.

Для того щоб застосувати цей прийом, треба знати дві четвірки, що задовольняють початкове рівняння. Одну таку четвірку ми вже знаємо – (3, 4, 5, ). За другу четвірку можна взяти числа , які очевидно, що задовольняють початкове рівняння. Інакше кажучи, покладемо:

Тоді для 𝑘 ми отримаємо наступне значення:

 

а числа

будуть відповідно дорівнювати

Очевидно, що останні чотири вирази задовольняють початкове рівняння

.

Оскільки всі ці вирази мають однаковий знаменник, то його можна відкинути. Отже при наше рівняння задовольняють (при будь яких 𝑟 та 𝑠 ) наступні числа:

В цьому можна впевнитись і безпосередньо, піднісши ці вирази до кубу і додавши їх. Надаючи 𝑟 та 𝑠 різні цілі значення, можемо отримати цілий ряд цілочисельних розв’язків нашого рівняння. Якщо при цьому отримані числа будуть мати спільний множник, то на нього ці числа можна поділити. Наприклад, при 𝑟=1, 𝑠=1 отримуємо для 𝑥, 𝑦, 𝑧, 𝑡 наступні значення: 36, 6, 48, , або після скорочення на 6, значення 6, 1, 8, . Таким чином,

.

 


Информация о работе «Діафантові рівняння»
Раздел: Математика
Количество знаков с пробелами: 38079
Количество таблиц: 1
Количество изображений: 2

0 комментариев


Наверх