1.1.4 Пропускная способность перемычек

Пропускная способность перемычки:

 

где: Рн и Рк – давление в месте присоединения перемычки к первой и второй нитке газопровода соответственно, l длина газопровода.


Аналогично находим пропускную способность других перемычек, кроме перемычки между 3-ей и 2-ой нитками, вблизи КС Нюксеница, особенностью которой является соединение всасывающей линии 3-ей нитки с нагнетательной линией 2-ой.

Рассчитаем пропускную способность этой перемычки.

Данные расчетов других перемычек на всасывающей линии приведены в таблице 1.6.

Таблица 1.6

Компрессорная станция

Пропускная способность, млн.м3/сут

Синдор 12,4
Микунь 10,5
Урдома 20,7
Приводино 17,1
Нюксеница 1 9,6
Нюксеница 2 9,8
Юбилейная 17,8
Грязовец 21,1

Данные расчетов других перемычек на нагнетательной линии приведены в таблице 1.7.

Таблица 1.7

Компрессорная станция

Пропускная способность, млн.м3/сут

Синдор 11,7
Микунь 8,3
Урдома 19,5
Приводино 16,3
Нюксеница 13
Юбилейная 17,7
1.1.5 Перераспределение газа между компрессорными цехами

Эта задача решается путем использования перемычки перед узлом подключения.

Найдем расстояние от узла подключения до перемычки между первой и второй нитками на станции Синдор.

Схема соединения газопроводов перемычкой на всасывающей линии представленна на рисунке 1.


P3 Q2 Р2  2-ая нитка

q l

L3 L0 1-ая нитка

 Р3 Q0 P0 Q Р1   

КС Синдор КС Ухта

Рисунок 1

Составим систему из четырех уравнений:


где: Давление на выходе из КС Ухта на первой нитке Р1=5,6 [МПа]; давление в месте присоединения лупинга к первой нитке Р0; давление в месте присоединения лупинга к второй нитке Р2; давление в конце перегона Р3=3,29 МПа]; расход в первой нитке до присоединения перемычки Q=526,62 [м3/с]; расход в первой нитке после присоединения перемычки Q0=381,1 [м3/с]; расход во второй нитке после присоединения перемычки Q2=381,1 [м3/с]; расход в перемычке q=143,5 [м3/с]; длина газопровода до перемычки L0; расстояние от перемычки до узла подключения L3; длина перемычки l=100 [м]; диаметр нитки и перемычки D=1.195 [м]; коэффициент b=94100[К2кг2с/м4].

Решив систему уравнений методом подбора, найдем расстояние от перемычки до узла подключения:

L3=30 (м)

Расчет режима работы КС с перемычкой и при ее отключении

Рассчитаем режим работы компрессорного цеха 1 на станции Синдор при отсутствии перемычки между первой и второй нитками газопровода.

1.5.1.Определение коэффициента сжимаемости:

 

где:

Тв=273,4 [К]; Рв=3,29 [МПа]

1.5.2 Объемная производительность (при условиях всасывания):

где: Тсm, Рсm – температура и давление при стандартных условиях.


1.5.3 Приведенная объемная производительность:

где: nн ,n – номинальная и фактическая частота оборотов

1.5.4 Приведенная относительная частота оборотов:

1.5.5 Приведенная внутренняя мощность

Определяется по приведенной характеристике в зависимости от Qпр (приложение 8)

1.5.6 Плотность газа при условиях сжатия

1.5.7 Мощность на валу двигателя

где:

Ni - внутренняя мощность

Nмех - механические потери (100 кВт при газотурбинном приводе)

1.5.8 Удаленность от границы помпажа


Поскольку  агрегат не находится в зоне помпажа

1.5.9 КПД агрегата:

КПД находится по приведенной характеристике в зависимости от Qпр (приложение 8)

h=0,778

Рассчитаем режим работы компрессорного цеха 1 на станции Синдор при наличии перемычки между первой и второй нитками газопровода.


1.5.10 Определение коэффициента сжимаемости:

 

где:

Тв=273,4 (К); Рв=3,29 (МПа)

1.5.11 Объемная производительность (при условиях всасывания):

где: Тсm, Рсm – температура и давление при стандартных условиях.

1.5.12 Приведенная объемная производительность:

где: nн ,n – номинальная и фактическая частота оборотов


1.5.13 Приведенная относительная частота оборотов

1.5.14 Приведенная внутренняя мощность:

Определяется по приведенной характеристике в зависимости от Qпр (приложение 8)

1.5.15 Плотность газа при условиях сжатия

1.5.16. Мощность на валу двигателя:

где:

Ni - внутренняя мощность

Nмех - механические потери (100 кВт при газотурбинном приводе)

1.5.17 Удаленность от границы помпажа

Поскольку  агрегат не находится в зоне помпажа

1.5.18 КПД агрегата

h=0,835

Рассчитаем режим работы компрессорного цеха 2 на станции Синдор при отсутствии перемычки между первой и второй нитками газопровода.

1.5.19 Опредиление коэффициента сжимаемости

 

где:

Тв=273,4 (К); Рв=3,29 (Мпа)


1.5.20 Объемная производительность (при условиях всасывания)

где: Тсm, Рсm – температура и давление при стандартных условиях.

1.5.21 Приведенная объемная производительность:

где: nн ,n – номинальная и фактическая частота оборотов

1.5.22 Приведенная относительная частота оборотов:

1.5.23 Приведенная внутренняя мощность

Определяется по приведенной характеристике в зависимости от Qпр (приложение 8)

1.5 24 Плотность газа при условиях сжатия

1.5.25 Мощность на валу двигателя:

где: Ni - внутренняя мощность

Nмех - механические потери (100 кВт при газотурбинном приводе)


1.5.26 Удаленность от границы помпажа

Поскольку  агрегат не находится в зоне помпажа

1.5.27 КПД агрегата

h=0,839

Рассчитаем режим работы компрессорного цеха 2 на станции Синдор при наличии перемычки между первой и второй нитками газопровода

1.5.28 Опредиление коэффициента сжимаемости:

 

где: Тв=273,4 (К); Рв=3,29 (МПа)


1.5.29 Объемная производительность (при условиях всасывания)

где: Тсm, Рсm – температура и давление при стандартных условиях.

1.5.30 Приведенная объемная производительность

где: nн ,n – номинальная и фактическая частота оборотов

1.5.31 Приведенная относительная частота оборотов


1.5.32 Приведенная внутренняя мощность

Определяется по приведенной характеристике в зависимости от Qпр (приложение 8)

1.5. 33 Плотность газа при условиях сжатия

1.5.34 Мощность на валу двигателя

где: Ni - внутренняя мощность

Nмех - механические потери (100 кВт при газотурбинном приводе)

1.5.35 Удаленность от границы помпажа:

Поскольку  агрегат не находится в зоне помпажа


Информация о работе «Реконструкция газопровода»
Раздел: Промышленность, производство
Количество знаков с пробелами: 104857
Количество таблиц: 32
Количество изображений: 33

Похожие работы

Скачать
70495
0
7

... семінару з міжнародною участю „Інтегровані структури паливно-енергетичного комплексу в системі антикризового управління „ 12-14 квітня 2007 р., м.Запоріжжя. АНОТАЦІЯ   Говдяк Р.М. Підвищення ефективності магістральних газопроводів на пізній стадії експлуатації. – Рукопис. Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.15.13 – "Трубопровідний транспорт, ...

Скачать
249350
33
10

... (рациональная система нефтепроводов). Это, однако, не означает полного возврата к старой модели управления. 4) Сохранение единого экономического пространства - условия выживания топливно-энергетического комплекса. 5) Найти четкую и продуманную программу инвестиций в нефтяную промышленность. 6) Организовать единый Российский банк нефти и газа, государственная внешнеторговая фирма, включающая ...

Скачать
316221
40
172

... расчет величины затрат необходимых для внедрения этого проекта в производство. Оценить изменение себестоимости продукции получаемой в цехе первичной переработки нефти и получения битума. В цехе установлено две печи: для нагрева нефти П-1 и для подогрева мазута и пара П-3, после реконструкции должна быть установлена печь, которая полностью заменит обе печи П-1 и П-3. Производительность печи по ...

Скачать
85104
3
6

... , или, другими словами, устройство настенных вводов. Правда, возможность устройства настенных вводов в большой степени зависит от грунтовых условий. Преимущество вводов газопроводов из полиэтиленовых труб заключается в исключении риска разрушения стальных участков от действия электрохимической коррозии. К недостаткам можно отнести опасность механических повреждений и повреждений от теплового ...

0 комментариев


Наверх