Контрольная работа «Многомерные и многосвязные системы»
Задание Для многомерной системы, заданной матрицами А, В, С, получить:

1. Передаточную функцию ;

2. Частотную передаточную функцию ;

3. Годограф;

4. Импульсную характеристику ;

5. Переходную характеристику ;

6. ЛАЧХ ;

7. ФЧХ .

Составить структурную схему системы.


Дано:

;

;

.

Решение: 1. Передаточная функция

Рассматриваем линейную систему с постоянными параметрами:

,

.

Преобразуем по Лапласу матричные уравнения:

; (1)

, (2)

где

; ;

– лапласовы преобразования координат состояния , выходных  и входных  сигналов.

Преобразуем уравнение (1):


Выносим за скобки:

где

 – единичная матрица.

Умножаем слева на обратную матрицу:

Откуда получаем:

.

Подставляем в уравнение (2):

Получаем:

Выражение  называют передаточной функцией системы.

Находим её:


Находим обратную матрицу:

Подставляем:

.

2. Частотная передаточная функция

Для получения частотной передаточной функции производим замену в передаточной функции :

,

получаем:

.

Выделим действительную и мнимую части:

,

для этого умножим числитель и знаменатель  на комплексно – сопряжённый знаменатель:


;

;

;

.

3. Годограф

Годограф – это график частотной передаточной функции  на комплексной плоскости при изменении частоты  от нуля до бесконечности.

Изменяя частоту, производим расчёт действительной  и мнимой  частей частотной передаточной функции.

Результат расчёта записываем в таблицу 1.

Таблица 1. Расчёт годографа

0 2,8750000 0,0000000 10 -0,0512719 0,4570747 200 -0,00018 0,020008
1 2,7230769 0,9846154 20 -0,0163435 0,2074170 300 -0,000078 0,013336
2 1,9500000 1,9000000 30 -0,0075500 0,1355448 400 -0,000044 0,010001
3 0,8344828 1,9862069 40 -0,0043030 0,1009350 500 -0,000028 0,008001
4 0,2250000 1,5500000 50 -0,0027705 0,0804792 600 -0,000019 0,006667
5 0,0130624 1,1611030 60 -0,0019302 0,0669441 700 -0,000014 0,005715
6 -0,0500000 0,9000000 70 -0,0014209 0,0573176 800 -0,000019 0,005000
7 -0,0645030 0,7269777 80 -0,0010893 0,0501171 900 -0,000009 0,004445
8 -0,0634615 0,6076923 90 -0,0008614 0,0445267 1000 -0,000007 0,004000
9 -0,0578113 0,5216604 100 -0,0006982 0,0400600 2000 -0,000002 0,002000

Можно построить график на комплексной плоскости – рис. 1.



Рис. 1. Годограф

4. Импульсная характеристика

Импульсная характеристика вычисляется как обратное преобразование Лапласа от передаточной функции:

.

Найдём полюса передаточной функции:

Видим – полюса расположены в правой полуплоскости, а это значит, что процесс будет расходящимся.

Разложим передаточную функцию на простые дроби:


.

Используя табличные значения, находим:

,

.

Таким образом, получаем:

.

Изменяя время от нуля до 5 секунд, производим расчёт по формуле, результаты заносим в таблицу 2.

Таблица 2. Импульсная характеристика

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

-4 11,28 62,69 100,8 -167,1 -1236 -2395 2097 23854 54578 -15944

Строим график импульсной характеристики – рис. 2.

Рис. 2. Импульсная характеристика



Информация о работе «Многомерные и многосвязные системы»
Раздел: Математика
Количество знаков с пробелами: 9232
Количество таблиц: 5
Количество изображений: 10

Похожие работы

Скачать
44679
2
35

... имеют некоторый типовой вид. Сложные (многосвязные) технические объекты в совокупности с узлами (устройствами) управления первого, исполнительного уровня образуют подсистемы оперативного управления, которые представляют собой многосвязные системы автоматического регулирования (МСАР) по типу следящих систем. Задающие воздействия для них формируются на втором, тактическом уровне, а цели управления ...

Скачать
7087
1
3

... kL>kN, где через kL, kG, kN обозначены порядки старших производных полиномов от р в соответствующих матрицах L(p), G(p) и N(p). Уравнение движения САУ составляется на основе ее структуры и математического описания, входящих в систему элементов, и имеет вид уравнения (1.1.1), где u(t)=z(t) и z(t) - вектор задающих воздействий на систему. Уравнение движения САУ (1.1.1), записанное относительно ...

Скачать
332503
41
0

... по соответствующему полю). В окне Конструктора таблиц созданные связи отображаются визуально, их легко изменить, установить новые, удалить (клавиша Del). 1 Многозвенные информационные системы. Модель распределённого приложения БД называется многозвенной и её наиболее простой вариант – трёхзвенное распределённое приложение. Тремя частями такого приложения являются: ...

Скачать
56510
1
22

... , а 3 формируется путем умножения построчно колонок 1 и 2. Модель в абсолютных единицах после определения коэффициентов записывается в виде Динамическая идентификация Многие технологические объекты управления, функционирование которых в динамике еще недостаточно изучено, не могут быть описаны аналитически. Для получения их динамических моделей также применяются экспериментальные методы. ...

0 комментариев


Наверх