Контрольная работа ТЕОРИЯ ВЕРОЯТНОСТЕЙ

1. В каждой из двух урн содержится 6 черных и 4 белых шаров. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.

Решение

Пусть гипотезы и состоят в том что:

Из первой урны извлекли черный шар, вероятность

- извлекли белый шар, вероятность

Гипотезы несовместны и сумма их вероятностей равна 1. Значит, гипотезы образуют полную группу.

Пусть событие А состоит в том, что из второй урны извлекут черный шар. Если происходит событие Н1 то во второй урне станет 6+1=7 черных и 4 белых шара. В этом случае вероятность наступления А равна


Если же происходит событие Н2 то во второй урне станет 6 черных и 4+1=5 белых шаров. Вероятность наступления А


По формуле полной вероятности вычислим вероятность события А (из второй урны вынут черный шар)


Ответ: 0,60

5. Студент знает 40 из 50 вопросов программы. Найти вероятность того, что студент знает 2 вопроса, содержащиеся в его экзаменационном билете.

Решение

Для каждого вопроса вероятность того что студент его знает, одинакова


Найдем вероятность того, что в двух испытаниях событие А (студент знает вопрос) произойдет 2 раза по формуле Бернулли


Ответ: 0,64

11. Среднее число вызовов, поступающих на АТС в 1 мин., равно четырем. Найти вероятность того, что за 2 мин. поступит: 1) 6 вызовов; 2) менее шести вызовов; 3) не менее шести вызовов. Предполагается, что поток вызовов – простейший.

Решение

Интенсивность потока

Время t=2


По формуле Пуассона, вероятность того что за время t поступит k вызовов, равна

1)

2)



3)

15. Среднее число самолетов, прибывающих в аэропорт за 1 мин, равно трем. Найти вероятность того, что за 2 мин прибудут: 1) 4 самолета; 2) менее четырех самолетов; 3) не менее четырех самолетов.


 По формуле Пуассона, вероятность того что за время t поступит k вызовов, равна

1)


2)

3)

21-30. Для дискретной случайной величины Х, определенной в задаче:

1).написать ряд распределения; 2).построить многоугольник распределения;

3).вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение; 4).построить интегральную функцию распределения.

21. Вероятность того, что в библиотеке необходимая книга свободна, равна 0,3. В городе 4 библиотеки. СВ Х – число библиотек, которые посетит студент в поисках необходимой книги.

Решение

Случай ная величина Х может принимать такие значения

Х=1 – если студент найдет книгу в первой же библиотеке

Х=2 –если в первой не найдет а найдет во второй

Х=3- если не найдет в первой и второй а найдет в третьей

Х=4- если не найдет ни в первой, ни во второй, ни в третьей.

 Найдем их вероятности.

Пусть событие А состоит в том что книга найдена. Р(А)=0,3.


Не найдена – вероятность противоположного события равна

1)Запишем ряд распределения Х

Х 1 2 3 4
Р 0,3 0,21 0,147 0,343

2) См. рисунок 1(21)

3) Математическое ожидание дискретной случайной величины

Дисперсия



Среднеквадратическое отклонение

4) Х – дискретная случайная величина. Найдем функцию распределения F(x)=P{x<X}- кусочно-постоянная функция


25. Три плавбазы вышли на путину. Вероятность того, что первая из них перевыполнит план равна 0,9; вторая – 0,8 и третья – 0,85. СВ Х – число баз, перевыполнивших план.

Случай ная величина Х может принимать такие значения

Х=0 если ни первая ни вторая ни третья базы не перевыполнили план

Х=1 – это может произойти если 1-я база перевыполнила план, а вторая и третья нет, или вторая перевыполнила а первая и третья нет, или третья первыполнила а первая и вторая нет.

Х=2 –если первая и вторая базы перевыполнили план а третья нет, или вторая и третья перевыполнили а первая нет, или первая и третья перевыполнили а вторая нет.

Х=3- если все три базы перевыполнили план

.

 Найдем их вероятности.

По формулам суммы и произведения вероятностей, по формуле вероятности

1)Запишем ряд распределения Х

Х 0 1 2 3
Р 0,003 0,056 0,329 0,612

2) См. рисунок 1(25)

3) Математическое ожидание дискретной случайной величины

Дисперсия


Среднеквадратическое отклонение

4) Х – дискретная случайная величина. Найдем функцию распределения F(x)=P{x<X}- кусочно-постоянная функция


31-40. Случайная величина Х задана плотностью распределения ¦(х). Определить: а) параметр А; б) функцию распределения вероятностей F(х); в) математическое ожидание МХ; г) дисперсию ДХ; д) вероятность того, что в n независимых испытаниях случайная величина Х попадет ровно m раз в интервал (a, b). Построить графики функций ¦(х), F(х).

31.

¦(х)=

 n = 4, m = 3, a = 0, b= 2

Решение

а)Для плотности распределения непрерывной случайной величины должно выполняться условие


 

В нашем случае


б) Функция распределения вероятностей

 



в) Математическое ожидание



г) Дисперсия



д) При каждом независимом испытании вероятность попадания в интервал равна


По формуле Бернулли вероятность того что случайная величина в n=4 испытаниях m=3 раза попадет в интервал равна

е)Графики смотри рис.2(31)

35.

¦(х)=  

n=4, m=2, a=-1/3 А, b=5/4 А.

а)Для плотности распределения непрерывной случайной величины должно выполняться условие


 

В нашем случае


 



б) Функция распределения вероятностей

 



в) Математическое ожидание



г) Дисперсия



д) При каждом независимом испытании вероятность попадания в интервал равна



По формуле Бернулли вероятность того что случайная величина в n=4 испытаниях m=2 раза попадет в интервал равна

е)Графики смотри рис.2(35)

 

41-50. Дана выборка значений признака Х. Требуется:

1)  построить статическую совокупность;

2)  построить гистограмму частот;

3)  найти точечные оценки генеральной средней, генеральной

дисперсии и генерального среднего квадратического отклонения;

4)  найти доверительный интервал для неизвестного математического

 ожидания;

5)  проверить нулевую гипотезу о нормальном законе распределения

 количественного признака Х генеральной совокупности.

41.

38, 51, 57, 64, 76, 92, 89, 19, 35, 60, 22, 41, 44, 48, 60, 44, 67, 80, 86,

57, 25, 83, 73, 70, 70, 70, 64, 60, 60, 64, 57, 54, 57, 54, 32, 86, 86, 80,

76, 60, 76, 70, 70, 67, 67, 64, 64, 60, 28, 67, 41, 41, 51, 48, 44, 80, 80,

76, 73, 51, 67, 60, 32, 41, 41, 54, 57, 60, 67, 73, 73, 76, 57, 67, 73, 73,

 64, 60, 54, 57.

1)  Объем выборки n=80

Наименьшее значение признака Х

MIN:

19

Наибольшее значение

MAX:

92

Определим оптимальное число интервалов разбиения по формуле


Число интервалов:

7,00

Шаг интервала h=(92-19)/7=

10,43

Составим интервальный вариационный ряд

Интервал

Колич. Элементов

m(i)

Относит. Частоты

m(i)/n

Середины интервалов

 

19,00

29,43

4

0,05

24,21

29,43

39,86

4

0,05

34,64

39,86

50,29

10

0,13

45,07

50,29

60,71

23

0,29

55,50

60,71

71,14

18

0,23

65,93

71,14

81,57

15

0,19

76,36

81,57

92,00

6

0,08

86,79

2)Построим гистограмму частот, откладывая по оси Х границы интервалов а по оси У значения


3)Точечной оценкой математического ожидания является эмпирическая средняя


Точечной оценкой генеральной дисперсии является дисперсия эмпирическая

 



Точечная оценка генерального среднего квадратического отклонения

Исправленное среднее квадратическое отклонение


4)Доверительный интервал для неизвестного математического ожидания

имеет вид (при надежности p=0.95)

Доверительный интервал для оценки математического ожидания имеет вид


Где - такое число, для которого


По таблицам значений функции Лапласа находим =1,96

Доверительный интервал имеет вид

6) 
Предположим, что количественный признак Х имеет нормальное распределение и вычислим теоретические частоты.

Параметры распределения


Вероятность попадания в интервал для нормально распределенной случайной величины


Для более точного применения критерия Пирсона требуется чтобы теоретические частоты были>5. Это не выполняется для интервала 1, который объединяем с соседним. Теперь количество интервалов равно 6. Найдем величину уклонения


По таблицам для критерия Пирсона найдем критическую точку для количества степеней свободы k=6-1-2=3 и q=0.05


Отсюда следует, что различия между теоретическими и опытными частотами случайны и гипотезу о нормальном распределении следует принять.


45.

24, 99, 28, 68, 72, 81, 85, 93, 29, 36, 32, 48, 72, 52, 62, 60, 40, 85, 68, 76,

64, 52, 60, 76, 56, 60, 64, 68, 72, 76, 72, 68, 72, 85, 68, 72, 73, 98, 44, 51,

48, 52, 97, 56, 84, 81, 97, 62, 64, 56, 93, 86, 69, 89, 64, 81, 56, 72, 72, 81,

68, 76, 85, 70, 81, 72, 68, 71, 72, 93, 76, 92, 72, 93, 65, 55, 84, 36, 48, 52.

2)  Объем выборки n=80

Наименьшее значение признака Х

MIN:

24

Наибольшее значение

MAX:

99

Определим оптимальное число интервалов разбиения по формуле


Число интервалов:

7,00

Шаг интервала h=(99-24)/7=

10,71

Составим интервальный вариационный ряд

Интервальный ряд

Колич. Элементов m(i)

Относит. Частоты

m(i)/n

Середины интервалов

 

24,00

34,71

4

0,05

29,36

34,71

45,43

4

0,05

40,07

45,43

56,14

13

0,16

50,79

56,14

66,86

10

0,13

61,50

66,86

77,57

27

0,34

72,21

77,57

88,29

12

0,15

82,93

88,29

99,00

10

0,13

93,64

2)Построим гистограмму частот, откладывая по оси Х границы интервалов а по оси У значения


3)Точечной оценкой математического ожидания является эмпирическая средняя


Точечной оценкой генеральной дисперсии является дисперсия эмпирическая

 



Точечная оценка генерального среднего квадратического отклонения

Исправленное среднее квадратическое отклонение


4)Доверительный интервал для неизвестного математического ожидания

имеет вид (при надежности p=0.95)

Доверительный интервал для оценки математического ожидания имеет вид


Где - такое число, для которого


По таблицам значений функции Лапласа находим =1,96

Доверительный интервал имеет вид

7) 
Предположим, что количественный признак Х имеет нормальное распределение и вычислим теоретические частоты.

Параметры распределения


Вероятность попадания в интервал для нормально распределенной случайной величины


8) 


Для более точного применения критерия Пирсона требуется чтобы теоретические частоты были>5. Это не выполняется для интервала 1, который объединяем с соседним. Теперь количество интервалов равно 6. Найдем величину уклонения


По таблицам для критерия Пирсона найдем критическую точку для количества степеней свободы k=6-1-2=3 и q=0.05


Отсюда следует, что различия между теоретическими и опытными частотами значимы и гипотезу о нормальном распределении следует отклонить..


51-60.

 Для установления корреляционной зависимости между величинами

X и Y (где Y- случайная величина, X- неслучайная величина) проведены

эксперименты, результаты которых представлены в таблице.

 Требуется: 1. Найти условные средние и построить эмпирическую линию

 регрессии Y по X (ломаную). 2. Найти уравнение регрессии Y по X

 методом наименьших квадратов, принимая в качестве сглаживающей

линии параболу затем построить ее на одном чертеже

 с эмпирической линией регрессии. 3. Оценить тесноту корреляционной

зависимости Y по X. 4. Проверить адекватность уравнения регрессии Y по X.

51.

10 20 30 40 50

212

220

251

270

292

258

258

285

314

325

282

290

325

326

343

316

330

334

361

370

370

330

350

375

380

 

Решение

Найдем условные средние по у


Эмпирическая ломаная регрессии см рис 3(51)


Информация о работе «Формула Бернулли, Пуассона. Коэффициент корреляции. Уравнение регрессии»
Раздел: Математика
Количество знаков с пробелами: 13837
Количество таблиц: 21
Количество изображений: 25

Похожие работы

Скачать
86945
23
25

... случайной величиной и все статистические выводы приходится делать, опираясь только на результаты «пробных» испытаний. Именно такие модели в основном рассматриваются в математической статистике. В математической статистике употребляют также понятие параметрической и непараметрической модели. Параметрическая модель возникает тогда, когда нам известен вид функции распределения наблюдаемого признака, ...

Скачать
70295
2
1

... Вариационные ряды позволяют получить первое представление об изучаемом распределении. Далее необходимо исследовать числовые характеристики распределения (аналогичные характеристикам распределения теории вероятностей): характеристики положения (средняя арифметическая, мода, медиана); характеристики рассеяния (дисперсия, среднее квадратическое отклонение, коэффициент вариации); характеристики ...

Скачать
100095
5
2

... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1.  Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2.  ...

Скачать
46495
1
6

... , вторая в среднем убывает. 3.    D(x±h)=D(x)+D(h)±2mxh Доказательство. D(x±h)=M((x±h)2)—M2(x±h)=M(x2±2xh+h2)—(M(x)±M(h))2=M(x2)±2M(xh)+M(h2)—+M2(x)+2M(x)*M(h)—M2(h)=D(x)+D(h)±2(M(xh))—M(x)*M(h)=D(x)+D(h)±2mxh Вопрос 31 Мат. статистика опирается на теорию вероятностей, и ее цель – оценить характеристики генеральной совокупности по выборочным данным. Генеральной совокупностью называется ...

0 комментариев


Наверх