1. Построение прямой аппроксимирующей свойства тренда с помощью МНК

Наша ошибка сгенерирована по логнормальному закону с математическим ожиданием равным 0 и дисперсией равной 1. Гистограмма распределения шума представлена на рисунке 5.

Рисунок 5. (Гистограмма распределения значений шума по интервалам).

С помощью формул (21) и (22) вычислим коэффициенты линейного уравнения тренда с учетом шума с помощью метода МНК:

По найденным коэффициентам строим график прямой, которая аппроксимирует основные свойства линейного тренда. График показан на рисунке 6:


Рисунок 6. (Прямая, построенная по методу наименьших квадратов).

2. Прогнозирование дальнейшего продвижения тренда

Наша задача состоит в том, чтобы спрогнозировать дальнейшее поведение уравнения тренда и определить расхождения с спрогнозированными значениями.

Для этого увеличиваем участок наблюдения за линейным трендом без шума до τ =2t=50

График расхождения исходного тренда и аппроксимированного тренда по МНК виден на рисунке 7. (Yτ – исходный тренд; Zτ – аппроксимированный тренд по МНК)

Рисунок 7 (На рисунке показаны тренд и аппроксимирующая его свойства прямая, построенная по методу наименьших квадратов).


Расхождения вычислены на удаленно отрезке(τ=50):

Δ= Zτ - Yτ =0.864

Проведем серию из 25 экспериментов по вычислению расхождений Δ по модулю:

N 1 2 3 4 5 6 7 8 9 10 11 12 13
Δ 0.661 0.673 0.756 2.366 0.488 3.569 0.864 5.651 2.328 0.851 1.259 1.718 0.618
N 14 15 16 17 18 19 20 21 22 23 24 25

 

Δ 3.765 0.502 3.762 1.369 2.185 0.494 1.851 0.067 2.012 4.429 3.441 0.601

 

Рассчитаем среднее значение Δ и среднеквадратичное отклонение по формулам (6) и (8):

Δср=1.851; σ=1.484

График на рисунке 8 отображает расхождения между исходной функцией и прямыми, полученными в результате аппроксимации по МНК. Синим цветом показаны полученные прямые, красным - исходная функция.

Рисунок 8. (На рисунке показаны тренд и несколько прямых, построенных по методу наименьших квадратов и аппроксимирующих свойства тренда).



Информация о работе «Прогнозирование функций по методу наименьших квадратов»
Раздел: Математика
Количество знаков с пробелами: 15222
Количество таблиц: 5
Количество изображений: 17

Похожие работы

Скачать
32168
0
2

... рассчитать коэффициент парной регрессии, не решая системы уравнений. Ясно также, что если рассчитаны линейные регрессии х(у) и у(х), то произведение коэффициентов dx и by, равно r2: (7)[1] Взвешенный метод наименьших квадратов Далеко не все задачи исследования взаимосвязей экономических переменных описываются обычной линейной регрессионной моделью. Во-первых, исходные данные могут не ...

Скачать
27910
29
16

... Как видно из таблиц, обнаружилась автокорреляция только первого и второго порядков. Это говорит о том, что значительное влияние на урожайность озимой пшеницы в данном году оказывает урожайность двух предыдущих лет. 3. Метод экспоненциального сглаживания Выберем теперь форму зависимости (линейную или параболическую) методом экспоненциального сглаживания. Рассчитаем начальные условия ...

Скачать
22525
8
19

.1 Общая картина внешнеэкономической деятельность в Автономной Республике Крым в 2008 году По состоянию на 01.01.2009г. объёмы экспорта товаров в Автономной Республике Крым составили 586,5 млн.долл.США, импорта – 431,1 млн.долл.США. По сравнению с 2007 годом объёмы экспорта увеличились на 26,7%, импорта – в 1,6 раза. Положительное сальдо внешней торговли товарами составило 155,4 млн.долл. (в ...

Скачать
36469
0
1

... , проблема научного предусмотрения охватывает как теоретико-познавательный аспект, связанный с исследованием прогнозов как функции законов и теории наук, так и практический аспект, который выражается, в частности, в непосредственной связи прогнозирования с планированием и управлением.(11) 3.3 Классификация методов прогнозирования Методы прогнозирования можно разделить на две группы. Это ...

0 комментариев


Наверх