Санкт- Петербургский колледж


ДИПЛОМ

 

Тема: Размольно- подготовительный отдел

фабрики по производству бумаги глубокой печати


Исполнитель – студентка V курса

 

Руководитель_____________________


г. С.- Петербург

2008


СОДЕРЖАНИЕ

Введение

 1.Теория размола

  Общие сведения

  Теория процесса размола

1.3.Природа межволоконных сил связи и их формирование

1.4.Контроль за процессом размола

1.5.Направление процесса размола

1.6. Влияние размола на свойства бумаги

1.7. Технологические факторы, влияющие на процесс размола

1.8. Продолжительность размола

1.9. Удельное давление при размоле

1.10.Размалывающая гарнитура

1.11. Окружная скорость размалывающего органа

1.12.Кислотность массы

 1.13. Температура массы

2. Аппараты РОУ, конические и дисковые мельницы

2.1.Конические мельницы

2.2. Схемы установок и работа конических мельниц

2.3.Мельница Мордена

2.4. Дисковые рафинеры

3. Расчётная часть

3.1. Выбор композиции вырабатываемой продукции и основного агрегата

проектируемого объекта

3.2. Выбор оборудования для размола полуфабрикатов

3.3. Выбор оборудования для сортирования, очистки и сгущения массы

3.4. Выбор оборудования для хранения массы и подачи на машину

4. Схема подготовки массы для бумаги глубокой печати

5. ГОСТы теории

1. ТЕОРИЯ РАЗМОЛА

 

1.1.Общие сведения

Размол — одна из важных операций бумажного производства, от которой в значительной степени зависят многие свойства бу­маги. Лист бумаги, отлитый из неразмолотых волокнистых мате­риалов, получается неудовлетворительным по своему строению, внешнему виду и физико-механическим свойствам. Он обладает неравномерным, облачным просветом, большой пористостью, пух­лостью и малой прочностью. Это объясняется тем, что сравни­тельно длинные жесткие волокна сплетаются в хлопья и, оседая на сетке, дают неоднородный по структуре лист. Неразмолотые во­локна обладают малой пластичностью, слаборазвитой поверхно­стью и мало гидратированы, вследствие чего такие волокна плохо связываются друг с другом в бумажном листе.

Цель размола волокнистых материалов заключается в сле­дующем: подготовить волокнистый материал к отливу, придать ему определенную степень гидратации, сделать волокна гибкими, пластичными, увеличить их поверхность (фибрилляцией и набуха­нием), обеспечить лучший контакт и связь волокон в бумажном листе (придать ему прочность); придать бумажному листу путем укорочения, расщепления и фибрилляции волокон требуемую структуру и физические свойства: объемный вес, пухлость, пори­стость, впитывающую способность и др.

Размол ведется в присутствии воды при концентрации волок­нистой массы 2—8% в размалывающих аппаратах периодического и непрерывного действия — роллах, конических мельницах, рафи­нерах и др. Независимо от типа размалывающего аппарата прин­цип размола в волокна один и тот же. Он заключается в том, что волокнистая суспензия непрерывным потоком поступает к ножам рабочего органа аппарата, состоящего из неподвижно закреплен­ных ножей (статора) и вращающихся ножей, расположенных на барабане, конусе или диске (роторе). Проходя между ножами ро­тора и статора, зазор между которыми можно регулировать, во­локна подвергаются режущему действию кромок ножей и укора­чиваются или расщепляются в продольном направлении, раздавливаются торцовыми поверхностями ножей, расчесываются и фибриллируются.

1.2.Теория процесса размола

В результате указанных воздействий волокна при размоле в водной среде претерпевают значительные изменения как в струк­туре, так и в физико-химических свойствах. Бумажная масса при длительном размоле становится жирной на ощупь, она гораздо труднее отдает воду при обезвоживании на сетке бумагоделатель­ной машины, а получаемый из нее лист бумаги отличается большей усадкой при сушке, плотностью и прочностью.

Эти изменения в свойствах массы и бумаги настолько значи­тельны, что трудно объяснить их только одним механическим из­мельчением волокон. Поэтому не удивительно, что первыми тео­риями размола были химические теории. Их авторы Кросс и Бивен полагали, что вода при размоле вступает в химическое взаимодей­ствие с целлюлозой, образуя желатинообразный гидрат. Отсюда и произошел термин гидратация при размоле, широко при­меняемый в бумажном производстве, хотя в настоящее время в этот термин вкладывают несколько иное содержание. Другой автор химической теории Швальбе полагал, что при размоле мо­гут получаться гидро- и оксицеллюлоза, образующие слизь, кото­рая склеивает волокна в бумажном листе при сушке .

Химическая теория размола волокнистых материалов сыграла известную положительную роль: она способствовала применению при размоле ролльных добавок (крахмала, производных целлю­лозы и других гидрофильных коллоидов), ускоряющих процесс размола и повышающих прочность бумаги.

Последующие исследования, посвященные выяснению измене­ния химического состава волокна при размоле, показали несостоя­тельность химических теорий этого процесса. Исследования Кресса, Бьялковского , Керрена и других ученых показали, что хими­ческий состав волокна и его рентгенограмма при размоле не изме­няются. Происходит лишь небольшое уменьшение степени полиме­ризации целлюлозы, увеличивается растворимость в щелочах и гидролизное число. Эти явления объясняются увеличением поверх­ности и доступности целлюлозного волокна для действия щелоч­ных и кислотных реагентов, а также частичным разрушением цел­люлозных цепей при длительном размоле.

Позднее была выдвинута физическая теория размола. Ее ав­торы Стречен (1926) и Кемпбелл (1932) пытались объяснить свой­ства, приобретаемые массой и бумагой при размоле, только одним физическим процессом измельчения волокон. При этом Стречен придавал большое значение процессу фибриллирования, объясняя связь между волокнами в бумаге механическим переплетением по­верхностных фибрилл, а Кемпбелл — силам поверхностного натя­жения воды, под влиянием которых волокна сближаются при сушке и образуют лучший контакт друг с другом.

Физическая теория размола также не могла объяснить причину возникновения межволоконных связей в бумаге и потерю проч­ности ее после увлажнения. Позже эти авторы выдвинули гипотезу «частичной растворимости» целлюлозы в воде и «рекристаллиза­цию» целлюлозных цепей при сушке, чтобы объяснить природу межволоконных связей в бумаге.

Дж. Кларк в 1943 г. выдвинул другую теорию размола. У Стречена он взял его концепцию о фибрилляции волокна, а у Кемпбелла — идею частичной растворимости целлюлозы в воде и действие поверхностного натяжения при сушке. Эти пред­ставления он дополнил своими наблюдениями о влиянии первичной стенки на набухание и фибрилляцию волокон. Однако и эту теорию нельзя было признать вполне удовлетворительной.

Еще раньше Я. Г. Хинчин высказал предположение, что при размоле происходит освобождение полярных гидроксильных групп у макромолекул целлюлозы, находящихся на поверхности микро­фибрилл наружных стенок волокна, и что, по-видимому, через эти группы соседние волокна связываются между собой в бумажном листе. Однако это предположение ничем не подтверждалось.

В 1940 г. Эллисом и Бассом было установлено, что межмолеку­лярное взаимодействие между цепями целлюлозы в клеточных обо­лочках волокна осуществляется через гидроксильные группы за счет водородной связи. Как известно, водородная связь — особый вид межмолекулярного взаимодействия, осуществляемого ато­мами водорода между двумя другими электроотрицательными атомами, например кислородом, фтором, азотом или хлором. Этот вид связи проявляется у веществ, обладающих высоким дипольным характером. Энергия водородной связи находится в пределах 3—8 ккал/'моль. Она значительно больше энергии связи сил ван дер Ваальса, но меньше энергии химической связи.

Водородная связь через кислород типа ОН. . . О возникает при расстояниях между атомами 2,55—2,75 А. Полагают, что в ориен­тированных участках целлюлозы гидроксильные группы целиком включены в водородную связь, а в аморфных — частично. При на­мокании целлюлозного материала вода проникает в доступные участки аморфной целлюлозы и разрушает водородную связь, за­меняя ее менее прочной водной связью также через водородный мостик. При дальнейшем набухании целлюлозы в отдельных ее участках образуются не только мономолекулярные, но и полимо­лекулярные водные пленки, причем связь между цепями ослабе­вает, а гибкость и пластичность волокон повышаются.

Открытие водородной связи в целлюлозных материалах сыграло важную роль в развитии современной теории размола. В основу ее положена гипотеза, что межволоконная связь в бу­маге имеет ту же природу, что и межмолекулярные связи в цел­люлозе. Основные положения современной теории размола были сформулированы автором еще в 1947 г. Одновременно анало­гичные взгляды на процесс размола были высказаны и другими исследователями

В современной теории размола особое значение придается слоистому, фибриллярному строению волокна, содержанию в нем гемицеллюлоз, способствующих набуханию и фибрилляции волокон. Благодаря этим процессам при размоле волокно стано­вится гибким и пластичным, увеличивается связанная поверхность между волокнами и образуются межволоконные связи в готовой бумаге .

Процесс фибрилляции заключается в ослаблении и разруше­нии связей между отдельными фибриллами и микрофибриллами клеточной стенки под влиянием механических воздействий и про­никновения воды в межфибриллярные пространства, т. е. в об­ласти аморфной целлюлозы, где сосредоточена главная часть гемицеллюлоз. Последние, располагаясь на поверхности фибрилл, усиленно набухают, повышая гибкость и пластичность волокон, что способствует скольжению фибрилл в клеточной стенке друг относительно друга.

Фибрилляция может происходить как на поверхности, так и внутри клеточной стенки волокна. В первом случае поверхность волокна разрушается и от нее отделяются фрагменты клеточных оболочек и фибрилл, образуя своеобразный ворс на поверхности волокна, видимый при большом увеличении микроскопа. Такая фибрилляция увеличивает наружную поверхность волокна и его способность к образованию межволоконных связей, однако она ослабляет прочность самого волокна и снижает сопротивление бумаги раздиранию. При внутренней фибрилляции отделения фи­брилл не происходит, повышается лишь гибкость и пластичность волокон в результате усиленного набухания гемицеллюлоз в меж­фибриллярных пространствах, ослабления и частичного разруше­ния связей между фибриллами. Такая фибрилляция сообщает волокну способность к образованию межволоконных связей, не снижая прочности самого волокна, а потому она является более желательной.

Некоторые исследователи высказывают предположение, что ге-мицеллюлозы, обладая более короткими, чем целлюлоза, цепями и ветвистым строением, способны очень сильно набухать, образуя подобие коллоидного раствора на поверхности фибрилл целлю­лозы. В таком состоянии они, обладая известной степенью по­движности, могут перемещаться и сорбироваться на поверхности волокон, что облегчает образование межволоконных связей между микрофибриллами соседних волокон через гидроксильные группы. Вначале при прессовании мокрого листа эта связь уста­навливается через гидратированную пленку воды на поверхности микрофибрилл, затем при удалении воды сушкой — через мономо­лекулярную пленку воды с более четкой ориентацией гидроксиль-ных групп и, наконец, через водородную связь при полном удале­нии воды сушкой и сближении поверхностей волокон силами поверхностного натяжения воды до необходимого расстояния 2,5—2,75 А. Сближению волокон при сушке способствуют пластич­ность и гибкость размолотого волокна и силы поверхностного натя­жения воды, величина которых, как показал Б. Кемпбелл , может достигать 100—200 кгс/см. Силы, стягивающие волокна в единую структуру, оказывают большое влияние на более тонкие и гибкие волокна. В результате действия этих сил бумага при сушке под­вергается значительной усадке и образует более плотный и проч­ный лист.

Резюмируя, можно сказать, что главное действие размола за­ключается в подготовке поверхности волокон для образования межволоконных связей и в придании волокнам способности свя­зываться между собой в прочный лист, что достигается частичным разрушением и удалением наружных клеточных оболочек, прида­нием волокнам гибкости и пластичности вследствие ослабления и частичного разрушения межфибриллярных связей вторичной кле­точной стенки (фибрилляция волокна) и усиленного набухания целлюлозного волокна и особенно гемицеллюлоз в межфибрилляр­ных пространствах и на поверхности фибрилл (гидратация во­локна при размоле). Термин гидратация здесь применяется в смысле коллоидно-физического взаимодействия целлюлозы с во­дой и достаточно хорошо характеризует сущность коллоидно-фи­зических явлений, происходящих с волокном при размоле.

Второе важное действие размола заключается в укорочении во­локон и частичном их расщеплении по длине, что необходимо для предотвращения флокуляции волокон при листообразовании и улучшения формования, а также для придания бумаге требуемой структуры при выработке тонких, жиронепроницаемых, впитываю­щих и других видов бумаги.

Таким образом, механические процессы измельчения волокон обусловливают главным образом структуру бумажного листа, а коллоидно-физические процессы — связь волокон в бумаге. Бла­годаря межволоконным силам связи бумага приобретает плот­ность и прочность, а пористость и пухлость ее снижаются.

1.3.Природа межволоконных сил связи и их формирование.

При­рода межволоконных сил связи в бумаге может быть различной, однако главным и основным видом этой связи является водород­ная связь через гидроксильные группы, расположенные на поверх­ности микрофибрилл соседних волокон. Энергия этой связи по оп­ределению Корте составляет 4,5 ккал/моль, а расстояние между гидроксильными группами, при котором она образуется, составляет 2,7 А. Наряду с водородной связью в бумаге действуют и силы ван дер Ваальса, однако их энергия связи мала и потому не может обеспечить достаточную прочность бумаги.

Прочность бумаги, отлитой в неполярной жидкости, например в бензине, или из целлюлозы, у которой гидрофильные группы за­менены гидрофобными, обусловлена только силами ван дер Ва-альса. Аналогичная картина наблюдается и у бумаги, изготовлен­ной из волокон минерального и органического происхождения: асбеста, стекловолокна, шерсти, синтетических волокон. Все они не имеют функциональных гидроксильных групп и не могут обра­зовать прочной связи, а потому из них нельзя приготовить сколько-нибудь прочную бумагу без введения специального связующего.

В настоящее время наличие водородной связи между волок­нами в бумаге можно считать вполне доказанным. X. Корте и X. Шашек путем обменной реакции дейтерия с водородом установили уменьшение количества гидроксильных групп в бу­маге, образованной из размолотых волокон, за счет образования межволоконных водородных связей. По данным этих исследовате­лей, в водородную связь включается от 0,5 до 2% гидроксильных групп, имеющихся в целлюлозе. Если учесть, что основное коли­чество гидроксильных групп в целлюлозном волокне включено в межмолекулярную водородную связь в кристаллитах, а также частично и в аморфных областях целлюлозы, то это уж не такая малая цифра. Она достаточно хорошо согласуется и с увеличе­нием количества воды, адсорбированной целлюлозным волокном при размоле. По данным Б. Кемпбелла , при сильном размоле целлюлозы поглощение воды по сравнению с немолотой целлюло­зой повышается на 4% и на такую же величину увеличивается общая поверхность волокна.

Доказательством образования водородной связи в бумаге мо­жет служить также и следующее наблюдение: предварительно растянутая бумага, у которой снята первичная ползучесть, релаксирует при повторном цикле нагрузки и ее снятии без поврежде­ния структуры. Такое поведение бумаги невозможно при наличии только механических сил трения между волокнами, оно доказы­вает существование молекулярных сил связи .

Разрешающая сила электронного микроскопа пока еще не по­зволяет рассмотреть отдельные водородные связи, однако тонкие перемычки из прядей и фибрилл между соседними поверхностями волокон хорошо видны на микрофотографиях, и нет сомнений в том, что эти связи имеют молекулярную основу.

Как уже указывалось, большую роль для формирования водо­родных связей между волокнами играют силы поверхностного на­тяжения воды, которые стягивают тонкие и гибкие волокна и при­водят их в тесное соприкосновение между собой при прессовании и сушке бумаги.

У бумаги из стекловолокна нарастание прочности до сухо­сти 25—30% происходит точно так же, как и у целлюлозной бу­маги, так как в этой стадии прочность бумаги обусловливается только силами поверхностного натяжения воды, однако при даль­нейшем обезвоживании сушкой прочность бумаги снова начинает снижаться и притом прогрессивно, падая до нуля, так как проч­ные связи у бумаги из стекловолокна не образуются. Однако если к стекловолокну прибавить подходящее связующее, например крахмальный или силикатный клей, то при сушке такой бумаги также начнут формироваться связи между волокнами и проч­ность бумаги будет возрастать.

 

1.4.Контроль за процессом размола

Для оценки качества массы при размоле применяют различ­ные методы и приборы. Степень помола массы или ее садкость определяют на приборах Шоппер-Риглера и канадским стандарт­ным, среднюю длину волокна — на приборах Иванова, Имсета и полуавтоматическом курвиметре, на котором также определяют и фракционный состав массы по длине волокон. Визуальную оценку структуры и размеров волокон производят с помощью ми­кроскопа и микропроекционного аппарата. Способность массы удерживать воду определяют по методу Джайме. При иссле­довательских работах определяют также скорость обезвоживания массы, сжимаемость, набухший объем волокна, удельную поверх­ность.

Степень помола массы в большинстве стран Европы опреде­ляют на приборе Шоппер-Риглера, в Америке, в Скандинавских странах и в Англии широко используется также и канадский стан­дартный прибор. На обоих этих приборах определяют способность бумажной массы пропускать через себя воду; полученные данные характеризуют степень разработки и измельчения волокон, а также степень их гидратации при размоле. Однако по показа­ниям этих приборов еще нельзя судить о средних размерах воло­кон. Устройство этих приборов хорошо известно и описание их приведено в любой книге по технологии бумаги.

Прибор Шоппер-Риглера не чувствителен в низкой (от 8 до 16° ШР) и в высокой областях размола массы (свыше 85— 90° ШР). Поэтому он малопригоден для анализа массы, приме­няемой для изготовления древесноволокнистых плит, а также массы для конденсаторной бумаги.

Для оценки структуры волокна при размоле массы пользуются микроскопом или микропроекционным аппаратом, который уста­навливают в темной комнате. Изображение волокна направляют на большой экран, разграфленный на квадраты, масштаб которых позволяет оценивать волокна по длине. Однако определение сред­ней длины волокна с помощью микроскопа сложно, требует опыта от работников и занимает много времени.

Следовательно, предпочтение следует отдать второму по­казателю, которым и надлежит пользоваться для производствен­ного контроля процесса размола массы и при проведении иссле­довательских работ.

В последние годы в Финляндии и Швеции были выпущены полуавтоматические приборы для определения фракционного со­става массы по длине волокон. В этих приборах микроскопическое изображение волокон отбрасывается на стеклянный столик при­бора, разграфленный на несколько секторов, и оператор с помо­щью курвиметра, снабженного мерным колесом, обводит изобра­жения всех волокон. При этом электронный счетчик сразу сумми­рует результаты анализа, регистрируя отсчеты по фракциям. На основании полученных результатов фракционного состава можно вычислить по указанным ранее формулам как среднеарифметиче­скую, так и средневзвешенную длину волокна. Эти приборы дают более надежные и быстрые измерения по сравнению с измерени­ями, выполненными с помощью обычного микроскопа, однако они значительно уступают в скорости определения средней длины во­локна на приборах Иванова и Имсета, а потому они менее при­годны для производственного контроля процесса размола.

В последнее время стали широко применять для оценки ка­чества массы при размоле, особенно при проведении научных ис­следований, показатель водоудерживающей способности массы после ее центрифугирования при определенных стандартных ус­ловиях обезвоживания (навеска 0,15 г абс. сухого волокна, цент­робежная сила 3000 гс): Этот показатель выражается в процен­тах удерживаемой волокном воды и характеризует степень набу­хания и гидратации волокон при размоле. Считают, что этот показатель лучше, чем степень помола по Шоппер-Риглеру, ха­рактеризует способность волокон к образованию межволоконных связей и получению прочной бумаги.

 

1.5.Направление процесса размола

Чтобы судить наиболее полно о процессе размола массы, не­обходимо контролировать не только степень помола, но и длину волокна. Соотношение в изменении этих двух показателей, назван­ное нами коэффициентом ужирнения К, позволяет судить о направ­лении процесса размола : идет ли он в сторону гидратации (ужирнения), или в направлении механического укорочения во­локон.

 


Информация о работе «Размольно-подготовительный отдел фабрики по производству бумаги»
Раздел: Промышленность, производство
Количество знаков с пробелами: 87694
Количество таблиц: 10
Количество изображений: 9

Похожие работы

Скачать
48359
0
0

... используемый для производства транспортной тары. Кроме того, существует картон с микрогофром, его используют для потребительской тары. 5. Основные технико–экономические показатели, характеризующие производство бумаги и картона Технико-экономические показатели применяются для планирования и анализа организации производства и труда, уровня техники, качества продукции, использования основных и ...

Скачать
50342
9
1

... деятельности предприятия. Организационная структура ООО "Алатырская бумажная фабрика" приведена в приложение. №1. Предприятие ООО " Алатырская бумажная фабрика " имеет линейно-функциональную организационную структуру управления. Управление Обществом осуществляется в соответствии с законодательством РФ и Уставом Общества. При этом Общество самостоятельно определяет структуру органов управления и ...

Скачать
76396
2
2

... опасные деревья вдоль лесовозного уса на расстоянии 25 м в обе стороны должны быть убраны до начала строительства.   2.4 Валка леса   Валка леса бензопилами. В лесозаготовительной промышленности наряду с машинной валкой значительное распространение имеет валка леса бензомоторными цепными пилами . Лесозаготовительные предприятия оснащаются главным образом бензомоторными пилами отечественного ...

Скачать
73891
16
6

... со средним специальным образованием, не менее 5 лет. Обязанности 1. Под руководством начальника отдела проводить работу по технико-экономическому анализу производственно-хозяйственной деятельности предприятия и его подразделений с целью изыскания и использования внутренних материальных, трудовых и финансовых резервов, повышения экономической эффективности производства. 2. Осуществлять сбор, ...

0 комментариев


Наверх