1. Підгрупа Фиттинга і її властивості
Добуток всіх нормальних нильпотентних підгруп групи називають підгрупою Фиттинга групи й позначають через . Множина простих дільників порядку групи позначається через а найбільшу нормальну -підгрупу групи - через .
Лема 1.1. (1) - найбільша нормальна нильпотентна підгрупа групи ;
(2) ;
(3) .
Proof. (1) Нехай і - нильпотентние нормальні підгрупи групи й нехай і - силовські -підгрупи з і . Тому що , а , те по лемі 4.1, с. 35. Аналогічно, , тому . Ясно, - -група. Покажемо, що вона силовська в. Для цього обчислимо її індекс:
Тому що чисельник не ділиться на , те - силовська -підгрупа групи . Отже, добуток двох нормальних нильпотентних підгруп є нормальна нильпотентна підгрупа. Тому - найбільша нормальна нильпотентна підгрупа групи .
(2) Ясно, що для всіх , тому
Обернено, якщо - силовська -підгрупа групи , те й нормальна в , тому й
(3) Якщо , те й нильпотентна, тому по (1) і .
Лема 1.2. (1) ; якщо розв'язно й , те ;
(2) (3) якщо , те ; якщо, крім того, абелева, те
Proof. (1) Оскільки підгрупа Фратіні - нильпотентна нормальна підгрупа групи , те . Нехай - розв'язна неодинична група. Тоді розв'язна й неодинична. Нехай
Тому що - -група для деякого простого , то по наслідку 4.2, с. 35, підгрупа нильпотентна й . Отже, .
(2) Якщо , те - нильпотентна нормальна в підгрупа по теоремі 4.3, с. 35, тому й
Зворотне включення треба з визначення підгрупи Фиттинга.
(3) Для мінімальної нормальної підгрупи або , або . Якщо , то
Якщо , то - елементарна абелева -група для деякого простого . Тому що , те . З іншого боку, по теоремі 4.4, с. 35, тому .
Теорема 1.3. для кожного . Зокрема, якщо розв'язно, те
Proof. Нехай , . Тому що по лемі 4.5, с. 35, те . Припустимо, що для деякого й нехай
Ясно, що й Нехай - силовська -підгрупа групи . Тому що
-група, те, а оскільки , те й . Тепер, - нильпотентна нормальна підгрупа групи й . Таким чином, і перше твердження доведене. Якщо розв'язно, то розв'язно, тому й .
Говорять, що підгрупа групи доповнюємо в , якщо існує така підгрупа , що й . У цьому випадку підгрупу називають доповненням до підгрупи в групі
Теорема 1.4. Якщо - нильпотентна нормальна підгрупа групи й , те дополняема в.
Proof. За умовою а по теоремі 4.6, с. 35, комутант . По теоремі 4.7, с. 35, підгрупа Фратіні а за умовою Тому й абелева. Нехай - додавання до в. По лемі 4.8, с. 35, Оскільки й те й по теоремі 4.7, с. 35,
Отже, і - доповнення до в.
Теорема 1.5. Факторгрупа є прямий добуток абелевих мінімальних нормальних підгруп групи .
Proof. Припустимо спочатку, що й позначимо через підгрупу Фиттинга По теоремі 4.6 комутант Але значить по теоремі 4.7, с. 35. Тому й абелева. Нехай - прямий добуток абелевих мінімальних нормальних підгруп групи найбільшого порядку. Тоді й по теоремі 1.4 існує підгрупа така, що По тотожності Дедекинда Але абелева, тому а тому що , те На вибір перетинання й
Нехай тепер і По лемі 1.2(2) Тому що те для твердження вже доведене.
Наслідок 1.6. У розв'язній групі з одиничною підгрупою Фратіні підгрупа Фиттинга є прямий добуток мінімальних нормальних підгруп.
Теорема 1.7. Підгрупа Фиттинга збігається з перетинанням централізаторов головних факторів групи.
Proof. Нехай
По наслідку 4.9, с. 35, підгрупа нормальна в. Якщо
головний ряд групи , те
нормальний ряд групи . Тому що підгрупа втримується в кожній підгрупі , те
для . По теоремі 4.10, с. 35, підгрупа нильпотентна, тому .
Перевіримо зворотне включення. Нехай - головний фактор групи . Тому що
те по лемі 4.11, с. 35, або
або
У першому випадку , тому
У другому випадку з нильпотентності підгрупи по лемі 1.2 одержуємо, що
Знову . Таким чином, і .
Лема 1.8. .
Proof. Нехай . Ясно, що й . Тому що
те й ізоморфна нормальної нильпотентною підгрупі групи . Тому
Нехай - група й нехай
Ясно, що
У розв'язній неодиничній групі підгрупа Фиттинга відмінна від одиничної підгрупи по лемі 1.2. Тому для розв'язної групи існує натуральне таке, що .
Нильпотентною довжиною розв'язної групи називають найменше , для якого . Нильпотентну довжину розв'язної групи позначають через . Таким чином, якщо група розв'язна й , те
Тому побудований ряд нормальний і його фактори нильпотентни.
Ясно, що тоді й тільки тоді, коли група нильпотентна.
Приклад 1.9. .
Непосредсвенно з визначення нильпотентною довжини випливає
Лема 1.10. Нехай - розв'язна група. Тоді:
(1) ;
(2) .
Лема 1.11. (1) Якщо - розв'язна група, то довжина будь-якого нормального ряду групи з нильпотентними факторами не менше, ніж .
(2) Нильпотентна довжина розв'язної групи збігається з довжиною самого короткого нормального ряду з нильпотентними факторами.
Proof. (1) Застосуємо індукцію один по одному групи . Нехай
нормальний ряд групи з нильпотентними факторами. Тому що - нормальна нильпотентна підгрупа групи , те й . Тут . Факторгрупа має порядок менше, ніж порядок групи й володіє поруч
де . Ясно, що це нормальний ряд, його довжина і його фактори
нильпотентни. По індукції й .
(2) треба з (1). Лема 1.12. Нехай - розв'язна група. Тоді:
(1) якщо , те ;
(2) якщо , те ;
(3) якщо й , те
зокрема, якщо й - розв'язні групи,те
(4) .
Proof. Нехай і . Тоді
(1) Нехай . Тоді ряд
буде нормальним рядом підгрупи з нильпотентними факторами
По лемі 1.11.
(2) Нехай і . Тоді ряд
буде нормальним рядом групи з нильпотентними факторами
По лемі 1.10.
(3) Ясно, що . Позначимо . Тоді по лемі 1.10, а по індукції
Тому . Тому що по (1), те маємо
(4) Покладемо . По лемі 1.2 для неодиничної розв'язної групи маємо й
Тому .
Наступна теорема належить К. Дерку.
Теорема 1.13. Якщо - максимальна підгрупа розв'язної групи , те, де .
Приклад. Скористаємося індукцією один по одному групи . Нехай - мінімальна нормальна підгрупа групи . Якщо , то й , де . Тому можна припустити, що всі мінімальні нормальні підгрупи групи втримуються в. Якщо група містить дві різні мінімальні нормальні підгрупи, те й по індукції
Оскільки
те теорема справедлива. Отже, можна вважати, що група містить у точності одну мінімальну нормальну підгрупу. Якщо , то по лемі 1.12 і знову
Оскільки
те знову теорема справедлива.
Отже, можна вважати, що й по наслідку 1.6. По індукції
Якщо , то твердження справедливо. Нехай , тобто . Уважаємо, що - -група. Тоді - -група. Нехай . Якщо , то й , тому
і теорема справедлива.
Залишається випадок, коли . Тому що - -підгрупа, те
причому - -група. Протиріччя.
Приклад 1.14.
Всі три значення в теоремі 1.13 мають місце. Значення виконується на будь-який нильпотентною неодиничній групі. Значення виконується на групі з максимальною підгрупою . Значення виконується на групі , у якої силовська -підгрупа максимальна.
Якщо факторгрупа нильпотентна, то групу називають метанильпотентною.
Теорема 1.15. (1) У розв'язній неодиничній групі підгрупа Фратіні збігається з перетинанням максимальних підгруп, що не містять підгрупу Фиттинга.
(2) У розв'язної ненильпотентною групі перетинання максимальних підгруп, що містять підгрупу Фиттинга, метанильпотентно.
Proof. Позначимо через перетинання всіх максимальних підгруп групи , що не містить , а через перетинання максимальних підгруп групи , що містять . Ясно, що підгрупи й характеристичні в групі й
(1) У факторгрупи підгрупа Фиттинга
по лемі 1.2, тому
Припустимо, що й нехай - мінімальна нормальна підгрупа групи , що втримується в. Тому що підгрупа нормальна в групі й факторгрупа нильпотентна, те по теоремі 4.3, с. 35, підгрупа нильпотентна й . Але тепер
протиріччя. Тому допущення невірно й , тобто .
(2) Нехай - розв'язна ненильпотентна група. Ясно, що й
Тому підгрупа метанильпотентна.
Приклад 1.16. У нерозв'язній групі центр, підгрупа Фратіні й підгрупа Фиттинга збігаються й мають порядок . Тому в групі немає максимальних підгруп, що не містять підгрупу Фиттинга.
Отже, твердження (1) теореми 1.15 у нерозв'язних групах порушується.
2. - довжина - розв'язної групи
Нехай - просте число. Назвемо групу - групою, якщо її порядок не ділиться на й, як звичайно, - групою, якщо її порядок дорівнює ступеня числа . Кінцеву групу будемо називати - розв'язної, якщо кожний з її композиційних факторів є або - групою, або -групою. Таким чином, група розв'язна у звичайному змісті тоді й тільки тоді, коли вона -розв'язна для всіх простих . Ясно, що група - розв'язна тоді й тільки тоді, коли вона має нормальний ряд
у якому кожна факторгрупа є або -групою, або -групою. Тому для такої групи ми можемо индуктивно визначити верхній -ряд.
зажадавши, щоб була найбільшої нормальною -підгрупою в , а - найбільшої нормальної -підгрупою в.
Найменше ціле число , для якого , ми назвемо -довгої групи й позначимо його , або, якщо необхідно, .
-довжину -розв'язної групи можна також визначити як найменше число -факторів, що зустрічаються в якому або ряді виду (2.1), оскільки мінімум досягається для верхнього -ряду (2.2). Підгрупи й, мабуть, характеристични в , і містить всі нормальні підгрупи групи з -довгої, не переважаючого числа . Помітимо також, що
для
Підгрупи й факторгрупи -розв'язної групи також -розв'язні, і їхня довжина не перевищує . Якщо групи й обидві -розв'язні, то таке ж їхній прямий добуток і
Нехай - -розв'язна група й - її силовська -підгрупа. Розумно припустити, що чим більше -довго групи , тим більшої повинна бути складність силовської підгрупи . Додамо точний зміст цьому твердженню й доведемо його декількома способами, обираючи різні критерії складності . Найбільш природні із цих критеріїв, силовські -інваріанти групи , такі:
(i) де - порядок ,
(ii) - клас нильпотентності , тобто довжина (верхнього або) нижнього центрального ряду ,
(iii) - довжина ряду комутантів ,
(iv) де - експонента , тобто найбільший з порядків елементів . Експонента самої групи , тобто найменшого загальне кратне порядків її елементів, дорівнює тому . Очевидно, рівність нулю кожного з інваріантів або рівносильно тому, що є -групою.
В основних теоремах обмежимося випадком непарних простих чисел , і навіть тоді результати будуть трохи різними, залежно від того, чи є простим числом Ферма чи виду ні.
Справедлива наступна теорема.
Теорема 2.1. Якщо - -розв'язна група, де - непарне просте число, те
(i)
(ii) якщо не є простим числом Ферма, і , якщо - просте число Ферма. Крім того, ці оцінки не можна поліпшити.
Ми встановимо також нерівності, що зв'язують c і з , але тут наші результати будуть тільки для простих чисел, що не є простими числами Ферма. Всі ці результати тривіальні для , і ми доведемо їхньою індукцією по . Припустимо, що й що , як завжди володіє верхнім -поруч (2.2). Нехай підгрупа Фратіні -групи . Усякий елемент групи індуцирує внутрішній автоморфізм групи й, отже, групи . Але, як відоме, є елементарної абелевой -групою; тому її можна ототожнити з аддитивной групою векторного простору над простим полем характеристики , а її автоморфізм - з лінійними перетвореннями цього простору. Автоморфизми групи , індуковані елементами , утворять тому лінійну групу над полем характеристики . Ця група, мабуть, є гомоморфним образом групи , і ми покажемо, що в дійсності вона ізоморфна групі , і тому є -розв'язною групою, не утримуючої нормальної підгрупи, відмінної від одиниці.
Теорема 2.2. Нехай - розв'язна лінійна група над полем характеристики , не утримуюча неодиничну нормальну -підгрупу. Нехай - елемент порядку в. Тоді мінімальне рівняння для має вигляд .
Число задовольняє наступній умові. Нехай найменше ціле число (якщо воно існує), для якого є ступенем простого числа із властивістю . Якщо не існує, то ; у противному випадку
Цей результат, доповнений більше детальними відомостями про елементи , для яких , буде ключем до доказу теореми А. Треба помітити, що нерівність може виконуватися тільки тоді, коли або коли - простої число Ферма. Теорема В и подібні їй теореми доводяться в основному прямим визначенням найменшої групи, що задовольняє цим умовам, і прямим обчисленням. При цьому відіграє важливу роль наступна теорема, цікава сама по собі.
Теорема 2.3. Нехай - якась -група, на яку діє -група , причому деякий елемент групи діє нетривіально на , але тривіально на кожну щиру -інваріантну підгрупу групи . Тоді існує таке просте число , що є або елементарної абелевой -групою, або -групою класу нильпотентності 2, у якої центр і комутант збігаються, факторгрупа по комутанту - елементарна абелева група й подання на неприводимо.
Слід зазначити, що якщо - розв'язна група, то обмежник тягне обмеженість довжини ряду комутантів групи .
Нехай означає наступне твердження:
: для кожного позитивного цілого числа існує таке ціле число , що всяка розв'язна група експоненти , породжувана елементами, має порядок не більше .
Теорема 2.4. істинно, якщо істинно для всіх ступенів простих чисел , що ділять .
Зокрема, тому що відомо, що , і щирі, те щирі й . У цих випадках, як і завжди, коли ділиться тільки на два простих числа, ми можемо слово "розв'язна" замінити у формулюванні словом "кінцева". Якщо - число, вільне від квадратів, ми навіть можемо обчислити , коли відомі для всіх простих , що ділять , і всіх . Так, порядок найбільшої кінцевої -породженої групи експоненти 6 дається формулою
де й
Нехай потрібно довести індукцією один по одному групи нерівність
Тут і - числові інваріанти, для деякого класу кінцевих груп, що ми вважаємо замкнутим. Ми вважаємо , що (2.3) виконується для досить малих , отже й для , і, крім того, що:
(I) якщо - підгрупа , те ;
(II) ;
(III) якщо - факторгрупа , те .
Тоді справедлива
Лема 2.5. У доказі нерівності (2.3) індукцією один по одному групи можна припустити, що володіє тільки одною мінімальною нормальною підгрупою.
Справді, якщо володіє двома мінімальними нормальними підгрупами й , ми одержимо, що , так що ізоморфно підгрупі прямого добутку . Так як - інваріант, що має однакові значення для ізоморфних груп, останні (I) і (II) дають
У силу припущення індукції й у силу умови (III) . Таким чином, , і точно також , так що , що й було потрібно.
Помітимо, що всі силовські -інваріанти, згадані раніше, крім , задовольняють умовам (I), (II) і (III). Те ж вірно й для інваріанта розв'язної групи й інваріанта -розв'язної групи; задовольняє умові (III). Таким чином, якщо задовольняє умовам (I) і (II), те цим же умовам задовольняє будь-яка функція , а якщо задовольняють умові (III), те цій же умові задовольняє будь-яка функція , що не убуває по кожному з аргументів. Тому що всі наші нерівності тривіальні для досить малих груп , то легко бачити, що твердження останньої леми можна застосовувати щораз, коли це необхідно.
Теорема 2.6. Якщо - розв'язна група, те .
Доводячи теорему індукцією один по одному , можна припустити, що володіє тільки одною мінімальною нормальною підгрупою. Тому що розв'язно, ця підгрупа буде -групою для деякого простого числа . Тоді у верхньому -ряді (2.2) групи підгрупа . Звідси
Але й -1, у той час як при інваріанти й мають однакові значення для й .
Нехай пропозиція індукції, застосована до групи , дає
Звідси треба теорема.
Нам знадобитися далі важлива властивість верхнього -ряду -розв'язної групи, що зручно вивести в небагато більше загальному контексті. Нехай - деяка множина простих чисел, а - додаткове до множина. -група - це кінцева група, порядок якої ділиться тільки на прості числа, що входять в. Кінцева група -розв'язна, якщо кожний її композиційний фактор є або -групою, або -групою. Така група володіє верхнім -поруч, для якого ми використовуємо ті ж позначення, що й у випадку, коли містить одне просте число . Таким чином, ми пишемо
для ряду нормальних підгруп, вимагаючи, щоб факторгрупа була найбільшої нормальною -підгрупою в , а факторгрупа - найбільшої нормальної -підгрупою в.
Лема 2.7. Якщо -розв'язна група не містить неодиничну -підгрупу, так що , то група містить свій централізатор у групі .
Нехай - централізатор групи . Якщо лема не вірна й , то ми можемо вибрати нормальну підгрупу групи , таку, що й мінімальну при цьому умові. Тому що група -розв'язна, факторгрупа виявляється або -групою, або -групою, а по визначенню групи вона не може бути -групою. Отже, факторгрупа є -група й порядки груп і взаємно прості. По теоремі Шура, група має доповнення в групі . Тому що , трансформування групи елементом з індуцірує її внутрішній автоморфізм, а тому що порядки й взаємно прості, цей автоморфізм може бути тільки тотожним. Тоді - прямий добуток і . Тому є характеристичною підгрупою в , а отже, нормальною підгрупою в , у протиріччі із припущенням, що . Це протиріччя доводить лему. Помітимо, що припущення насправді зайво, тому що в загальному випадку ми можемо застосувати лему до факторгрупи .
Наслідок 2.8. Нехай - деяка підгрупа , індекс якої не ділиться ні на яке просте число з , тоді центр групи втримується в центрі групи .
Дійсно, підгрупа повинна містити нормальну -підгрупу групи .
Наслідок 2.9. Нехай - деяка підгрупа групи , що містить , тоді не володіє неодиничної нормальної -підгрупою.
Дійсно, нормальна -підгрупа групи повинна втримуватися в центролизаторе групи .
Під -підгрупою кінцевої групи ми маємо на увазі таку підгрупу, порядок і індекс якої взаємно прості. Якщо група розв'язна і її порядок дорівнює , де , то група володіє -підгрупами порядку й будь-які дві з них сполучені, а тому ізоморфні.
Теорема 2.10. Якщо - розв'язна група порядку , де при , і якщо підгрупа групи порядку має клас нильпотентності те
Зокрема, для будь-якої кінцевої розв'язної групи . -підгрупа деякої факторгрупи , порядок якої ділить , має клас нильпотентності, не перевищуючий , так що ми можемо застосувати твердження леми 2.5 і одержати результат індукцією один по одному групи , допустивши що володіє тільки одною мінімальною нормальною підгрупою. Це буде -група для деякого простого числа , і ми можемо тому предполодить, що її порядок ділить . Тоді, якщо ми візьмемо в якості множина простих долителей числа , виявиться виконаної передумова леми 2.5. Якщо - найбільша нормальна -підгрупа групи й - її центр, то по наслідку леми 2.5 містить центр -підгрупи групи , що має порядок . Порядок -підгрупи групи ділить , тому клас нильпотентності її не більше . Для -підгрупи груп і порядку ізоморфні, так що в силу припущення індукції, застосованої до , одержимо
Тому що , той доказ по індукції проведено.
Перш ніж застосовувати лему 2.5 до доказу нерівності для , зручно уточнити її для випадку, при якому складається з одного простого числа . Нехай є -розв'язна група з верхнім -поруч (2.2) . Тоді лема 2.5, застосована до групи , показує, що якщо - елемент групи , що не входить в , те трансформування елементом індуцируе у нетотожний автоморфізм. Необхідне уточнення складається в заміні групи групою , де - підгрупа Фратіні групи . Тепер - -група, і в такий спосіб - елементарна абелева -група. Ясно тому, що автоморфізм групи , індукований групи , тотожний. Таким чином, множина елементів групи , що тотожно трансформує , є нормальною підгрупою групи , такий, що . По визначенню фактор група не може бути -групою, відмінної від 1, тому якщо , те група повинна містити елемент , що не входить в і порядку, взаємно простого . Тоді індуцірує автоморфізм групи порядку, взаємно простого с. Але автоморфізм -групи, по модулю підгрупі Фратіні, має порядок, рівний ступені числа . Таким чином, індуцірує у нетотожний автоморфізм, що суперечить визначенню групи . Виходить, , що й було потрібно. У такий спосіб:
Лема 2.11. Якщо є -розв'язна група з верхнім -поруч (2.2) і якщо - підгрупа Фратіні групи , те автоморфизми групи, які індуковані трансформуваннями елементами групи , представляють точно.
Наслідок 2.12. .
По лемі група не володіє неодиничної нормальної -підгрупою, і наступні члени її верхнього -ряду являють собою фактор групи по відповідних членів верхнього -ряду групи .
Теорема 2.13. Для кожної -розв'язної групи
(I)
(II)
Ми можемо використовувати індукцію один по одному групи й припустити, що володіє тільки одною мінімальною нормальною підгрупою . Очевидно, ми можемо також припустити, що , звідки наслідку з леми 2.11 , а, отже, , і - елементарна абелева -група. Тепер, думаючи , ми одержимо, що , так що по припущенню індукції містимо, що . Якщо - група порядку , то порядок її групи автоморфизмов дорівнює
так що . Відповідно до леми 2.11, група ізоморфна деякій підгрупі групи , так що , звідки . Таким чином,
що й було потрібно.
З іншої сторони відповідно до наслідку 1 леми 2.7, містить центр силовської -підгрупи групи , так що . Тому що , те індукція для (II) проводиться відразу.
Нерівності, отримані десь, аж ніяк не є найкращими. Для непарних їх значно можна підсилити. Однак при теорему 2.13 поліпшити не можна.
Останню теорему можна застосувати для короткого доказу тверджень і .
0 комментариев