3. Група з нильпотентними додаваннями до підгруп
У справжньому главі описані нерозв'язні кінцеві групи з нильпотентними додаваннями до несверхразрешимих підгруп. До цього класу груп ставляться, зокрема, і кінцеві групи із примарними індексами несверхразрешимих груп. Доводиться
Теорема 3.1. Кінцева нерозв'язна група з нильпотентними додаваннями до несверхразрешимих підгруп ізоморфна або , де - нильпотентна група, а й - прості числа.
Наслідок 3.2. Кінцева нерозв'язна група, у якій всі підгрупи непримарного індексу сверхразрешими, ізоморфна або , де - -група, або , де - -група.
Відзначимо, що кінцеві групи з нильпотентними підгрупами непримарного індексу вивчені С. С. Левищенко [13]. Серед них немає нерозв'язних груп.
Розглядаються тільки кінцеві групи. Всі позначення, що зустрічаються, і визначення стандартні, їх можна знайти в [2,14].
Нам знадобиться наступна
Лема 3.3. Нехай у кінцевій групі кожна несверхразрешима група володіє нильпотентним додаванням. Тоді в будь-якій підгрупі й у будь-який фактор-групі групи кожна несверхразрешима підгрупа володіє нильпотентним додаванням.
Proof. Нехай - довільна підгрупа кінцевої групи , і нехай - несверхразрешимая підгрупа з . У групі існує нильпотентное додавання до підгрупи . Тому , а . Тепер - нильпотентна, і до можна взяти нильпотентне додавання в підгрупі .
Нехай - нормальна в підгрупа, і - несверхразрешимая в підгрупа. Тоді несверхразрешима, і існує нильпотентна підгрупа така, що . Тепер нильпотентна й , тобто до підгрупи можна знайти в нильпотентное додавання.
Доведемо теорему.
Приклад. Шлях - кінцева нерозв'язна група з нильпотентними додаваннями до підгруп. Тому що не -нильпотентна, те в існує -замкнута підгрупа Шмидта , де - нормальна в силовська 2-підгрупа, підгрупа - циклічна [14,c. 434]. Оскільки не є сверхразрешимої, те існує нильпотентна підгрупа така, що . З урахуванням парності порядку з теореми 2.8 [15] містимо, що фактор-група ізоморфна або , де - деяке просте число, а - найбільша розв'язна нормальна в підгрупа. Крім того,
а
Тут і - 'елементарна абелева й циклічна підгрупи порядку . З теореми 2.10 [15] одержуємо, що - простої число.
У випадку, коли й - прості числа в простій групі , кожна несверхразрешима підгрупа ізоморфна групі . Остання підгрупа має в циклічне доповнення . Тому група у випадку, коли й - прості числа, задовольняє умові теореми.
Перевіримо, що група не задовольняють умові теореми. Нехай
Відомо, що - нормальна в підгрупа, а - циклічна група порядку . Для силовської -підгрупи з маємо
Тепер
Оскільки й - прості числа, то в існує підгрупа порядку . Для підгрупа -замкнута, і зовнішній автоморфізм не централізує силовскую -підгрупу, тому несверхразрешима. Тому що в немає нильпотентною підгрупи порядку , то не задовольняє умові теореми при . Якщо , то в для підгрупи Шмидта, ізоморфній знакозмінній групі ступеня , повинна найтися нильпотентна підгрупа порядку, що ділиться на . Але такий нильпотентною підгрупи в немає.
Отже, якщо , те ізоморфна , де й - прості числа.
Нехай тепер . Припустимо, що не є мінімальною нормальною в підгрупою, і нехай - мінімальна нормальна в підгрупа, що втримується в. По індукції, , де - нильпотентна, а ізоморфна або . Тому що , те - власна в підгрупа, і для її прообразу в групі по індукції одержуємо, що , де або . Підгрупа характеристична в , а нормальна в , тому нормально в. Тому що
те
Оскільки для несверхразрешимої підгрупи з існує нильпотентна підгрупа така, що , те
буде нильпотентною підгрупою.
Тепер розглянемо випадок, коли - мінімальна нормальна в підгрупа. Припустимо, що комутант - власна в підгрупа. Тому що
те
З мінімальності одержуємо, що
Тому що
де й - прості числа, то в цьому випадку теорема доведена.
Отже, нехай . Якщо - власна підгрупа у своєму централізаторі, то із простоти треба, що втримується в центрі . Тепер група ізоморфна або по теоремі VI.25.7 [14].
Нехай само централізована. Оскільки розв'язно, те - -група для деякого простого . Допусти, що існує простої , що ділить порядок , і нехай - силовська -підгрупа з . Якщо підгрупа сверхразрешима, то нильпотентна й не само централізована. Якщо не сверхразрешима, то за умовою теореми існує нильпотентна підгрупа така, що . Але тепер
буде розв'язної як добуток двох нильпотентних підгруп, протиріччя. Отже, - найбільше просте число, що ділить порядок .
Допустимо, що не втримується в. Тоді - власна в підгрупа й . Тому що , і - -група, те - група непарного порядку. Підгрупа має порядок і - просте число. Тому й тепер , а фактор-група
буде розв'язної як добуток двох нильпотентних підгруп. Протиріччя.
Отже, утримується в і із й нильпотентності одержуємо, що - -група для найбільшого простого , що ділить порядок . З теореми 2.1 [15] одержуємо, що , а . Але тепер - підгрупа непримарного індексу. Тому вона сверхразрешима, а тому що її порядок дорівнює , те нильпотентна, і знову не само централізована. Протиріччя.
Теорема доведена повністю.
Розглянемо доказ наслідку.
Proof. Нехай - кінцева нерозв'язна група, у якій всі підгрупи непримарного індексу сверхразрешимі. Якщо - несверхразрешима в підгрупа, те, де - просте число. Тепер для силовської -підгрупи з , тобто група задовольняє умові теореми. Тому
або
де - нильпотентна група. Якщо
те в є несверхразрешима підгрупа індексу . Тому що цей індекс повинен бути примарним, те або , тому або , а - або -група, або -група. Якщо
те в є несверхразрешимая підгрупа Шмидта порядку , а її індекс дорівнює й повинен бути примарним, тобто повинна бути -групою. Наслідок доведений.
0 комментариев