4. Подання функцій рядів Фур'є

Накладемо на функцію f(x) більше важка вимога, а саме-припустимо її у проміжку .

Тоді має місце загальна теорема:

Теорема. Якщо функція f(x) з періодом кусочно-диференцуєма в проміжку , то її ряд Фур'є в кожній крапці  сходиться й має суму

Ця сума, мабуть, дорівнює , якщо в крапці  функція безперервна.

Доказ. Відзначимо, що рівність (14) має місце для кожної функції f(x), що задовольняє поставленим умовам. Якщо, зокрема, взяти, то , і з (14) одержимо, що

Множачи обидві частини рівності на постійне число  й віднімаючи результат з (14), знайдемо

для нашої мети потрібно довести, що інтеграл праворуч при прагне до нуля.

Представимо його у вигляді

 (15)

де покладено

 (16)

якби нам удалося встановити що ця функція кусочно-безперервна, то з леми попереднього параграфа варто було б уже, що інтеграл (15) має межу нулю при . Але в проміжку  функція g(x) взагалі безперервна, за винятком хіба лише кінцевого числа крапок, де вона може мати перегони-тому що така функція f(x). Залишається відкритим лише питання про поводження функції g(x) при .

Ми доведемо існування кінцевої межі

;

поклавши тоді g(0)=K, ми в крапці t=0 одержимо безперервність, і застосування леми виявиться виправданим. Але другий множник у правій частині рівності (16) явно має межею одиницю; звернемося до вираження квадратних дужках.

Нехай, для простати, спочатку крапка  лежить усередині проміжку, де функція f(x) диференцуєма. Тоді , і кожне зі співвідношень

  (17)

прагне до межі , а — до нуля. Якщо ж  є "крапка стику", то при цьому вона може виявитися як крапкою безперервності, так і крапкою розриву. У першому випадку ми знову зштовхнемося з відношенням (17), але вони будуть прагнути цього разу до різних меж, відповідно-до похідній праворуч і до похідної ліворуч. До аналогічного результату прийдемо й у випадку розриву, але тут  заміниться значеннями  тих функцій, від склеювання яких вийшла дана, а межами відносин (17) будуть однобічні похідні згаданих функцій при .

Отже, наш висновок справедливо у всіх випадках.


5. Випадок неперіодичної функції

Вся побудована вище теорія виходила із припущення, що задана функція визначена для всіх речовинних значень x і притім має період . Тим часом найчастіше доводиться мати справа з неперіодичною функцією f(x), інший раз навіть заданої тільки в проміжку .

Що б мати право застосувати до такої функції викладену теорію, уведемо замість її допоміжну функцію  певну в такий спосіб. У проміжку  ми ототожнюємо  з f(x):

 (18)

потім думаємо

а на інші речовинні значення x поширюємо функцію  за законом періодичності.

До побудованого в такий спосіб функції  з періодом  можна вже застосувати доведену теорему розкладання. Однак, якщо мова йде про крапку , що строго лежить між  і , те, через (18), нас довелося б мати справа із заданою функцією . По тій же причині й коефіцієнти розкладання можна обчислити по формулах обчислення коефіцієнтів не переходячи до допоміжної функції. Коротше кажучи, все доведене вище безпосередньо переноситься на задану функцію , минаючи допоміжну функцію .

Особливої уваги, однак, вимагають кінці проміжку . При застосуванні до функції  теореми попереднього параграфа, скажемо, у крапці , нам довелося б мати справа як зі значеннями допоміжної функції  праворуч від , де вони збігаються вже зі значеннями  праворуч від ю Тому для як значення  належало б взяти

.

Таким чином, якщо задана функція  навіть безперервна при , але не має періоду , так що , те-при дотриманні вимог сумою ряду Фур'є буде число

відмінне як від , так і від . Для такої функції розкладання має місце лише у відкритому проміжку .

Наступне зауваження так само заслуговує на особливу увагу. Якщо тригонометричний ряд

сходиться в проміжку  до функції , то через те, що його члени мають період , він сходиться всюди, і сума його  теж виявляється періодичною функцією з періодом . Але ця сума поза зазначеним проміжком взагалі вже не збігається з функцією .



Информация о работе «Вивчення функцій рядів Фур'є»
Раздел: Математика
Количество знаков с пробелами: 21220
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
21601
0
4

... що найбільший теоретичний і прикладний інтерес представляє випадок викладений у другому розділі. Розділ 2 Всі результати першого розділу, що стосуються дзета-функції Римана, були отримані в припущенні, що її аргумент s – дійсне число. Однак, найвидатніші дослідження й численні важливі додатки стали можливі лише після включення в область визначення функції комплексних чисел. Уперше розглянув ...

Скачать
140123
0
3

... общин, де кожний буде зобов'язаний трудитися. М.А. Бакунін дотримувався ідей анархізму, бачивши у владі причину експлуатації. Один з феноменів російської науки - плідна розробка ідей економіко-математичного моделювання, заснована на базі як „чистих” математиків, що направили свої зусилля в економіку, так і розробок професійних економістів. Перші російські економісти-математики (Ю.Г. Жуковській, ...

Скачать
205459
0
0

... усю країну. Незважаючи на те, що твори соціалістів-утопістів не мали серйозної теоретичної основи, вони відобразили пошуки ідеального справедливого суспільства та справили значний вплив на еволюцію економічної думки. Видатні мислителі-утопісти: започаткували глибоку критику існуючого суспільного ладу, його суперечностей і спонукали до роздумів над проблемами еволюції людського суспільства; ...

Скачать
134760
25
33

... ікативна модель дає неточні результати. У процесі побудови моделі виконують числову оптимізацію параметрів адаптації в межах [0; 1]. РОЗДІЛ 3 СТАТИСТИЧНА ОЦІНКА ТА ПРОГНОЗУВАННЯ ЦІН НА ПРОМИСЛОВУ ПРОДУКЦІЮ У ЛЬВІВСЬКІЙ ОБЛАСТІ   3.1 Статистичний аналіз цін виробників промислової продукції у Львівській області   У Львівській області індекс цін виробників промислової продукції у 2007 році ...

0 комментариев


Наверх