6. Випадок довільного проміжку
Припустимо, що функція задана в проміжку довільної довжини в ньому. Якщо вдатися до підстановки
,
те вийде функція від у проміжку , теж кусочно-диференцуєма, до якої вже прикладемо розгляду попереднього параграфа. Як ми бачили, за винятком крапок розриву й кінців проміжку, можна розкласти її в ряд Фур'є:
коефіцієнти якого визначаються формулами Ейлера-Фур'є:
повернемося тепер до колишньої змінного , думаючи
.
Тоді одержимо розкладання заданої функції в тригонометричний ряд трохи зміненого виду:
(19)
Тут косинуси й синуси беруться від кутів, кратних не , а . Можна було б і формули для визначення коефіцієнтів розкладання перетворити тією же підстановкою до виду
(20)
Відносно кінців проміжку зберігають силу зауваження, зроблені в попередньому параграфі щодо крапок Звичайно, проміжок може бути замінений будь-яким іншим проміжком довгі зокрема, проміжком . В останньому випадку формули (20) повинні бути замінені формулами
(20a)
7. Випадок парних і непарних функцій
Якщо задана в проміжку функція буде непарної, то очевидно
У цьому легко переконається:
.
Таким же шляхом установлюється, що у випадку парної функції :
.
Нехай тепер буде кусочно-диференцуєма в проміжку парна функція. Тоді добуток виявиться непарною функцією, і по сказаному
Таким чином, ряд Фур'є парної функції містить одні лише косинусів:
(21)
Тому що в цьому випадку буде теж парною функцією, те, застосувавши сюди друге зі зроблених вище зауважень, можемо коефіцієнти розкладання написати у вигляді
(22)
Якщо ж функція буде непарної, то непарної буде й функція , так що
Ми доходимо висновку, що ряд Фур'є непарної функції містить одні лише синусів:
(23)
При цьому через парність добутку можна писати:
(24)
Відзначимо, що кожна функція , задана в проміжку , може бути представлена у вигляді суми парних і непарної тридцятимільйонних функцій:
,
Де
Очевидно, що ряд Фур'є функції саме й складеться з розкладання по косинусах функції й розкладання по синусах функції .
Припустимо, далі, що функція задана лише в проміжку . Бажаючи розкласти її в цьому проміжку в ряд Фур'є ми доповнимо визначення нашої функції для значень x у проміжку по сваволі, а потім застосуємо сказане в пункті "Випадок неперіодичної функції".
Можна використовувати сваволю у визначенні функції в проміжку так, що б одержати для розкладання тільки лише по косинусах або тільки по синусах. Дійсно, представимо семі, що для ми думаємо , так що в результаті виходить парна функція в проміжку . Її розкладання, як ми бачили, буде містити одні лише косинуси. Коефіцієнти розкладання можна обчислювати по формулах (22), куди входять лише значення спочатку заданої функції .
Аналогічно, якщо доповнити визначення функції за законом непарності, то вона стане непарної й у її розкладанні будуть одні лише синуси. Коефіцієнти її розкладання визначаються по формулах (24).
Таким чином, задану в проміжку функцію при дотриманні умов виявляється можливим розкладати як по косинусах, так і по одним лише синусах.
Особливого дослідження вимагають крапки й . Тут обоє розкладання поводяться по-різному. Припустимо, для простоти, що задана функція безперервна при й , і розглянемо спочатку розкладання по косинусах. Умова , насамперед, зберігає безперервність при , так що ряд (21) при буде сходитися саме к. Тому що, далі,
те й при має помста аналогічна обставина.
Інакше є справа з розкладанням по синусах. У крапках і сума ряду (23) явно буде нулем. Тому вона може дати нам значення й, мабуть, лише в тому випадку, якщо ці значення дорівнюють нулю.
Якщо функція задана в проміжку те, удавшись до тієї ж заміни змінної, що й у попередньому параграфі, ми зведемо питання про розкладання її в ряд по косинусах
або в ряд по синусах
до тільки що розглянутого. При цьому коефіцієнти розкладань обчислюються, відповідно, по формулах
або
.
... що найбільший теоретичний і прикладний інтерес представляє випадок викладений у другому розділі. Розділ 2 Всі результати першого розділу, що стосуються дзета-функції Римана, були отримані в припущенні, що її аргумент s – дійсне число. Однак, найвидатніші дослідження й численні важливі додатки стали можливі лише після включення в область визначення функції комплексних чисел. Уперше розглянув ...
... общин, де кожний буде зобов'язаний трудитися. М.А. Бакунін дотримувався ідей анархізму, бачивши у владі причину експлуатації. Один з феноменів російської науки - плідна розробка ідей економіко-математичного моделювання, заснована на базі як „чистих” математиків, що направили свої зусилля в економіку, так і розробок професійних економістів. Перші російські економісти-математики (Ю.Г. Жуковській, ...
... усю країну. Незважаючи на те, що твори соціалістів-утопістів не мали серйозної теоретичної основи, вони відобразили пошуки ідеального справедливого суспільства та справили значний вплив на еволюцію економічної думки. Видатні мислителі-утопісти: започаткували глибоку критику існуючого суспільного ладу, його суперечностей і спонукали до роздумів над проблемами еволюції людського суспільства; ...
... ікативна модель дає неточні результати. У процесі побудови моделі виконують числову оптимізацію параметрів адаптації в межах [0; 1]. РОЗДІЛ 3 СТАТИСТИЧНА ОЦІНКА ТА ПРОГНОЗУВАННЯ ЦІН НА ПРОМИСЛОВУ ПРОДУКЦІЮ У ЛЬВІВСЬКІЙ ОБЛАСТІ 3.1 Статистичний аналіз цін виробників промислової продукції у Львівській області У Львівській області індекс цін виробників промислової продукції у 2007 році ...
0 комментариев