1. Сообщение темы и целей урока.

2. Работа по теме урока.

     

Линейное уравнение  с 2 переменными  и  всегда можно преобразовать к виду , где -числа (коэффициенты), причем .

Этот частный вид линейного уравнения будем называть линейной функцией.

-независимая переменная (или аргумент), -зависимая переменная.

Линейная функция - это специальный вид линейного уравнения с 2 переменными.

Графиком линейной функции  является прямая.

3. Исторический экскурс о Пьере Ферма.

Пьер Ферма (1601-1665)

В истории математики Пьер Ферма занимает особое место. Он известен как автор "великой теоремы Ферма", которая чрезвычайно просто формулируется и которую до сих пор еще не удалось доказать.

Сумма квадратов двух целых чисел снова может быть квадратом целого числа. Например, 52+122=132. Теорема Ферма утверждает, что для более высоких степеней подобное невозможно, т.е. уравнение хn+yn=zn не имеет решений в целых числах ни при каких n > 2.

Сотни квалифицированных математиков и тысячи дилетантов в течение трехсот лет пытались доказать эту теорему. В 1993 году на страницах многих газет, не склонных писать о математике, промелькнула сенсационная новость: теорема наконец-то доказана! Но вскоре, как бывало уже не раз, в доказательстве обнаружилась ошибка.

Ферма вошел в славную когорту "обыкновенных гениев" начала XVII века, вместе с Декартом, Паскалем, Гюйгенсом… Но, справедливости ради, надо отметить, что именно его долгое время считали сильнейшим математиком века - вплоть до появления работ Ньютона и Лейбница.

Как и Декарт, Пьер Ферма родился на юге Франции, получил всестороннее образование - не только естественнонаучное, но и гуманитарное. Большую часть жизни он проработал юристом в парламенте города Тулузы. Хотя в то время математика уже была уважаемой наукой, но еще не считалась профессией.

Научных журналов тоже еще не существовало (первый из них появился в год смерти Ферма). Поэтому математики обменивались сведениями о своих достижениях в личной переписке. В истории науки вошло имя парижского священника Мерсенна, сыгравшего роль информационного центра для математиков разных стран. Сообщить о своем открытии Мерсенну означало опубликовать его для всей Европы.

В 1636 году Ферма отправил Мерсенну письмо, в котором изложил свой метод решения задач о максимуме и минимуме. Мерсенн переслал копию этого письма другим математикам, в том числе Декарту. Рассуждения Ферма, использующие бесконечно малые величины, показались Декарту недостаточно ясными, и он подверг работу младшего коллеги резкой критике. Так через две тысячи лет после работ Архимеда возобновились споры о законности действий с бесконечно малыми величинами, не утихавшие до XIX столетия.

Одновременно с Декартом Ферма пришел к созданию аналитической геометрии - науки, описывающей геометрические фигуры при помощи координат и формул. Однако Ферма пользовался неудобными обозначениями и не претендовал на открытие "универсальной математики", поэтому его рукопись была менее известна, чем "Геометрия" Декарта.

Ферма был одним из отцов теории вероятностей - современной науки, без которой невозможна работа страховых компаний или расчеты мощностей телефонных станций. Поводом для его исследований были азартные игры, особенно игра в кости, весьма распространенная в то время.

Помимо всего этого, Ферма оказался единственным математиком XVII века, занимавшимся арифметикой. Именно с его работ начинается современная теория чисел. Настольной книгой Ферма стала "Арифметика" древнегреческого математика Диофанта.

Самостоятельная работа учащихся: подготовить сообщение о Паскале.

4. Закрепление полученных знаний.

4.1 Выполнение № 897 (у доски):

а) Заданный промежуток является интервалом  наибольшего и наименьшего значений не существует.

б) Функция убывает  наибольшее значение в начале промежутка, а наименьшее в конце. Но в конце промежутка стоит знак +∞  наименьшего значения не существует.

Наибольшее

в) Функция возрастает  наименьшее значение в начале промежутка, а наибольшее в конце.

Наименьшее  Наибольшее =

г) Функция возрастает  наименьшее значение в начале промежутка, а наибольшее в конце.

Но в начале промежутка стоит знак - ∞  наименьшего значения не существует.

Наибольшее

4.2 Выполнение № 898 (а) (у доски):

а) Функция возрастает  наименьшее значение в начале промежутка, а а наибольшее в конце.

Наименьшее  Наибольшее

4.3 Выполнение № 863 (г) (у доски):

г)

-1 0 1

-1 1 3

4.4 Выполнение № 855 (б) (с комментированием):

б)     

4.5 Выполнение № 851 (а) (с комментированием):

а)     


Информация о работе «Исторические экскурсы в курсе алгебры 7 класса как средство развития познавательного интереса»
Раздел: Педагогика
Количество знаков с пробелами: 70672
Количество таблиц: 3
Количество изображений: 3

Похожие работы

Скачать
131068
4
7

... но все они сходятся в одном, что игра является способом развития личности, обогащения ее жизненного опыта. -   Из всего многообразия игр можно выделить математическую игру, как средство развития познавательного интереса учащихся к математике. Использование математической игры во внеклассной работе по математике наиболее эффективно способствует возникновению интереса у учащихся к математике. -   ...

Скачать
59835
6
0

... и только затем ознакомьтесь с ходом решения, предлагаемым Е. И. Игнатьевым. Данный ход решения можно применять в начальной школе с использованием иллюстративного материала, что с большей степенью повысит эффективность развития познавательной активности младших школьников. «Решение: Ясно, что приходится начать с козы. Крестьянин, перевезши козу, возвращается и берет волка, которого перевозит на ...

Скачать
80175
6
4

... , которая призвана возбудить интерес к учению, сделать учение увлекательным, мобилизировать психологическую энергию и усилия, поддержать стремления, преумножить любознательность и старания. Мотивы и стимулы в учебной деятельности школьников долгое время находились как бы на периферии педагогических исследований. Большую помощь в разработке этой проблемы оказали психологи. Однако, с конца 70-х гг. ...

Скачать
421810
29
0

... Владимир Ильич625000 Тюмень, ул. Советская 88-1 Хабаровский государственный педагогический университет На правах рукописи Золотарева Светлана Алексеевна Развитие Теории урока в советской дидактике периода середины 50-х – середины 60-х годов Диссертация на соискание ученой степеникандидата педагогических наук. 13.00.01 – Общая педагогика. Научный руководитель: доктор ...

0 комментариев


Наверх