2. Методы социально-экономического прогнозирования
По оценкам некоторых ученых насчитывается более 150 методов прогнозирования. Базовых методов гораздо меньше, многие из “методов” скорее относятся к отдельным способам и процедурам прогнозирования, либо представляют собой набор отдельных приемов, отличающихся от базовых методов количеством частных приемов и последовательностью их применения.
Под методом прогнозирования понимается совокупность приемов и способов мышления. Позволяющих на основе анализа ретроспективных данных, экзогенных (внешних) и эндогенных (внутренних) связей объекта прогнозирования, а также их измерения в рамках рассматриваемого явления или процесса вывести суждения определенной достоверности относительно будущего развития объекта.
Методы прогнозирования позволяют найти меру влияния отдельных закономерностей и причин развития, представить объект прогноза как динамическую систему измеренных с определенной степенью достоверности взаимодействий реальных явлений, факторов, сил общественной деятельности и тем самым дать возможность воспроизвести с определенной степенью вероятности поведение этой системы в будущем.
Методы экономического прогнозирования классифицируются по следующим признакам: степени формализации; общему принципу действия; способу получения прогнозной информации.
По степени формализации, т.е. изучения какой-либо содержательной области знания в виде формальной системы, связанной с усилением роли формальной логики и использованием математических методов научных исследований, методы экономического прогнозирования можно разделить на интуитивные и формализованные.
Интуитивные методы прогнозирования используются в тех случаях, когда невозможно учесть влияние многих факторов из-за значительной сложности объекта прогнозирования. В этом случае используются оценки экспертов. При этом различают индивидуальные и коллективные экспертные оценки, которые объединяет общий принцип действия.
В состав индивидуальных экспертных оценок входят: метод “интервью”, аналитический метод, построение сценария, метод психоинтеллектуальной генерации идей. При разграничении указанных методов используется третий признак классификации метод – способ получения прогнозной информации. Методы коллективных экспертных оценок включают в себя методы “комиссий”, “коллективной генерации идей” (мозговая атака), “Дельфи”, матричный метод и др.
В группу формализованных методов входят подгруппы: методы прогнозной экстраполяции, системно-структурные методы и модели, ассоциативные методы, методы опережающей информации. К первой подгруппе относятся методы экспоненциального сглаживания, скользящих средних и др. Кроме того, широко используются в процессе экономического прогнозирования нормативный и балансовый методы. Особое место в классификации методов экономического прогнозирования занимают комбинированные методы, которые объединяют различные методы. Например, коллективные экспертные оценки и методы моделирования или статистические методы и опрос экспертов.
Формализованные методы прогнозирования
Эти методы базируются на математической теории, которая обеспечивает повышение достоверности и точности прогнозов, значительно сокращает сроки их выполнения, позволяет обеспечить деятельность по обработке информации и оценке результатов.
Методы прогнозной экстраполяции
Метод экстраполяции заключается в приложении определенной для базисного периода тенденции развития экономического процесса к прогнозируемому периоду, он основывается на сохранении в будущем сложившихся условий развития процесса. При использовании этого метода необходимо иметь информацию об устойчивости тенденций развития объекта за срок, в 2-3 раза превышающий срок прогнозирования. Длительная тенденция изменения экономических показателей называется трендом. Последовательность действий при экстраполировании:
- четкое определение задачи, выдвижение гипотез о возможном развитии прогнозируемого объекта, рассмотрение факторов, стимулирующих или препятствующих развитию данного объекта, определение необходимой экстраполяции и ее допустимой дальности;
- выбор системы параметров, унификация различных единиц измерения, относящихся к каждому параметру в отдельности;
- сбор и систематизация данных, проверка их однородности и сопоставимости;
- выявление тенденций или симптомов изменения изучаемых величин в ходе статистического анализа и непосредственной экстраполяции данных.
Операцию экстраполяции в общей форме можно представить в виде определения значения функции:
Уi + L = F (Уi × L),
где Уi + L – экстраполируемое значение уровня;
L – период упреждения;
Уi – уровень, приняты за базу экстраполяции.
Простейшая экстраполяция может быть проведена на основе средних характеристик ряда: среднего уровня, среднего абсолютного прироста и среднего темпа роста.
Наиболее простым и известным является метод скользящих средних, осуществляющий механическое выравнивание временного ряда. Суть метода заключается в замене фактических уровней ряда расчетными средними, в которых погашаются колебания.
Для целей краткосрочного прогнозирования также может использоваться метод экспоненциального сглаживания. Средний уровень ряда на момент t равен линейной комбинации фактического уровня для этого же момента и среднего уровня прошлых и текущего наблюдений.
где – экспоненциальная средняя (сглаженное значение уровня ряда) на момент t; α – вес текущего наблюдения при расчете экспоненциальной средней; – фактический уровень динамического ряда в момент времени t; –экспоненциальная средняя предыдущего периода.
Экстраполяция тренда возможна, если найдена зависимость уровней ряда от фактора времени t, в этом случае зависимость имеет вид:
.
Модель стационарного процесса, выражающее значение показателя в виде линейной комбинации конечного числа предшествующих значений этого показателя и аддитивной случайной составляющей, называется моделью авторегрессии.
,
где α – константа, β – параметр уравнения, - случайная компонента.
Системно-структурные методы и модели
В морфологическом анализе систематически исследуются все комбинации при проведении качественных изменений основных параметров концепции и посредством этого выявляются возможности новых комбинаций.
Матричный подход используется для проверки согласования с различными горизонтально действующими факторами. Двумерные матрицы дают быстрый метод оценки первоочередности того или иного из предполагаемых вариантов. Этому принципу соответствует распространенный в менеджменте метод SWOT анализа, т.е. учет слабых и сильных сторон объекта, угроз и преимуществ во внешней среде.
К методам статистического моделирования относятся уравнения регрессии. Описывающие взаимосвязи временных рядов независимых признаков и результативных признаков. Прогнозные уровни рассчитываются посредством подстановки в уравнение регрессии прогнозных значений признаков-факторов, которые могут быть получены, например, на основе экстраполяции.
Инструментом прогнозирования, учитывающим требования системного подхода к объекту и его количественным характеристикам, являются эконометрические модели. Областью их приложений являются макроэкономические процессы на уровне национальной экономики, ее секторов и отраслей, экономики территорий.
... анализ, а также необходимо использование специальных методов прогнозирования временных рядов. 2 глава. Экономико-математические методы статистического анализа и прогнозирования доходов бюджета региона 2.1 Методы статистического анализа доходов бюджета региона Для количественной оценки динамики доходов бюджета региона применяются статистические показатели: абсолютные темпы роста и ...
... с методологией МОТ классифицируются как безработные. Прежде всего, дается информация об абсолютной численности безработных в стране и по регионам. Глава 3. Экономико–статистический анализ и прогнозирование безработицы 3.1. Экономический анализ безработицы Привычным явлением для некоторых категорий населения стала безработица. В 2005 году из общей численности трудовых ресурсов 252,4 тыс. ...
... найденное значение среднего темпа роста выступает в качестве коэффициента для составления прогноза на будущий срок. Высчитывается по формуле: (1.26) 2. Статистический показатель расчетов временных рядов (корреляция) Случайной величиной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед неизвестное и зависящее от случайных причин ...
... анализировать их тенденции и прогнозировать ситуацию в будущем. Все участники рынка ценных бумаг планируют свои операции только после тщательного анализа. Статистические методы прогнозирования развития рынка ценных бумаг основаны на построении фондовых индексов, расчете показателей дисперсии, вариации, ковариации, экстраполяции и интерполяции. Фондовые индексы являются самыми популярными во всём ...
0 комментариев