2.3 Случай с двумя последовательностями из трех переменных

Рассмотрим последовательность (а123) и (b 1, b2,b3), и запишем в виде таблицы

Если последовательность (а123)(b1, b2 ,b3) записанных в виде таблицы, где наибольшее из чисел а123 находиться над наибольшим из чисел b 1,b2,b3, а второе по величине а123 находиться над вторым по величине из чисел b 1,b2,b3 , и где наименьшее из чисел а123 находиться над наименьшим из чисел b 1,b2,b3 то последовательность одномонотонная.

Если =a1b1, и 1b12b2, то 1b12b2+a3b3


Для доказательства следующих теорем нам понадобится одно свойство одномонотонных последовательностей, которое оформим в виде леммы.

Лемма. Если (а1, а2, …аn) и (b 1, b2,…bn) одномонотонные последовательности, то их произведение не изменится при перестановки местами столбцов.

Доказательство.

Рассмотрим последовательность с двумя переменными из двух переменных.

1b12b2.

Заметим, что а1b12b2 = а2b2+ а1b1 по переместительному свойству сложения. Значит, в самой таблице мы тоже можем переставлять столбцы переменных, при этом сохраняется одномонотонность последовательности. То есть

=

Теперь рассмотрим последовательность с двумя последовательностями из трех переменных.

1b12b2+a3b3.

Кроме того, что мы можем поменять переменные по переместительному свойству, а по сочетательному свойству мы можем объединять некоторые слагаемые, сохраняя одномонотонность последовательности. То есть

а1b12b2+a3b3= (a3b32b2)+ а1b1 =

 

Лемма доказана

Теорема 2. Пусть (а1 а2 а3), (b1 b2 b3) – одномонотонные последовательности и ()(здесь и в дальнейшем) любая перестановка чисел b1 b2 b3. Тогда

 

  .

 

Доказательство.

Действительно, если последовательность  отличается от (b1 b2 b3) то найдется пара чисел k, l (1k<l3) такая, что последовательности (ak, al) и (bk, bl) не одномонотонны. Значит, поменяв местами числа  и , мы увеличим всю сумму, а значит и всю сумму . То есть

, так как .

Очевидно, что за конечное число попарных перестановок элементов 2-ой строки можно получить одномонотонную последовательность.

Теорема доказана


Упражнения

Данные ниже упражнения мы решим с помощью Теоремы 2

Упражнение №1.

Пусть a и b и c – положительные вещественные числа.

Докажите неравенство.

a3+b3+c3a2b+b2c+c2a.

Доказательство.

Заметим, прежде всего, что

a3+b3+c3=, a2b+b2c+c2a =

А так как последовательности (a2, b2, c2), (a, b , c) одномонотонны, то

.

А это значит, что a3+b3+c3a2b+b2c+c2a.

Что и требовалось доказать.

Упражнение №2.

Пусть a и b и c – положительные вещественные числа.

Докажите неравенство.

.

Доказательство.


Заметим, прежде всего, что

и (a, b, c) и () одномонотонные последовательности, то

,

.

Складывая эти неравенства, мы получаем

.

Отделим дроби с одинаковым знаменателем в правой части

.

Вычислив, получаем

.


А это значит, что

Что и требовалось доказать

 


Информация о работе «Доказательства неравенств с помощью одномонотонных последовательностей»
Раздел: Математика
Количество знаков с пробелами: 14104
Количество таблиц: 0
Количество изображений: 4

0 комментариев


Наверх