2.4 Случай с двумя последовательностями из n переменных

Рассмотрим одномонотонные последовательность (а1, а2, …аn) и (b 1, b2,…bn)

Если =a1b1, и 1b12b2, то 1b12b2…anbn

 

Теорема 3. Пусть (а1 а2 … аn), (b1 b2 … bn) – одномонотонные последовательности и ()перестановка чисел b1 b2 … bn. Тогда

 

 .

 

Доказательство.

Действительно, если последовательность () отличается от (b1 b2 … bn) то найдется пара чисел k, l (1k<ln) такая, что последовательности (ak, al) и (bk, bl) не одномонотонны. Значит, поменяв местами числа и  и , мы увеличим всю сумму, а значит и всю сумму . То есть

,


так как .

Очевидно, что за конечное число попарных перестановок элементов 2-ой строки можно получить одномонотонную последовательность.

Теорема доказана.

Следствие.

Для любого nN верно

 

.

Доказательство.

Но последовательности (а1 а2 … аn) и () не являются одномонотонными, и поэтому мы не можем воспользоваться теоремой 3.

Однако эти последовательности противомонотонны: числа в последовательностях расположены в обратном порядке – самому большому по величине соответствует самое маленькое, а самому маленькому соответствует самое большое. А из противомонотонных последовательностей сделать одномонотонные очень просто – достаточно все числа второй линии взять со знаком минус. В данном случае одномонотонными являются последовательности


 (а1 а2 … аn) и ()

Поэтому

 

Отсюда и следует искомое неравенство

Следствие

Для любого nN верно

(Неравенство Чебышева).

Доказательство.

В силу теоремы 3 справедливы следующие n неравенства

Значит


В этих неравенствах левая часть не изменяется, а в правой части элементы второй строки меняются циклически.

Складываем все и получаем

Что и требовалось доказать

Упражнение №1.

Пусть a и b и c – положительные вещественные числа.

Докажите неравенство.

a3+b3+c3+d3a2b+b2c+c2d+d2a.

Доказательство.

Заметим, прежде всего, что

a3+b3+c3+d3=, a2b+b2c+c2d+d2a =.

А так как последовательности

(a2, b2, c 2, d3), (a, b , c, d)

одномонотонны, то

.

А это значит, что a3+b3+c3+d3a2b+b2c+c2d+d2a.

Что и требовалось доказать.

Доказательство этого неравенства с помощью одномонотонных последовательностей я не могу сравнить с другим доказательством, так как доказать другим способом это неравенство я не смогла.

 

2.5 Случай с n последовательностями из n переменных

Рассмотрим одномонотонные последовательность (а1, а2, …аn), (b1, b2,…bn), …(d1, d2,…, dn).

Если =a1b1, и 1b12b2, и 1b12b2…anbn,

то = а1b1…d12b2…d2+ …+anbn…dn

 

Теорема 4. Рассмотрим одномонотонные последовательности (а1, а2, …аn), (b 1, b2,…bn), …, (d1, d2,…,dn). Тогда

.

 

Доказательство.

Действительно, если последовательность (a1, а2, …аn), (b'1, b'2,…b'n), …, (d'1, d'2,…,d'n) отличается от (а1, а2, …аn), (b 1, b2,…bn), …, (d1, d2,…,dn), то найдутся переменные k, l (1k<ln) такие, что последовательности (ak, al) и (bk, bl) …(dk, dl) не одномонотонны. Значит, поменяв местами числа ,, ak, al … dk, dl мы увеличим всю сумму, а значит и всю сумму . То

есть

,

так как .

Очевидно, что за конечное число попарных перестановок элементов n-ой строки можно получить одномонотонную последовательность.

Теорема доказана.

Пример

 


Упражнение 1

Пусть а1, а2, …аn - положительные вещественные числа.

Докажите, что

Это неравенство называется неравенством Коши о среднем арифметическом и среднем геометрическом. Докажем его двумя способами

Доказательство.

Перепишем его в виде:

, введя новые переменные

 

Имеем

 


Если сравнить эти два доказательства неравенства, можно заметить, что доказательство с помощью одномонотонных последовательностей гораздо легче в сравнении с доказательством Коши.

неравенство одномонотонный последовательность коши


Заключение

Работая по данной теме, я узнала новый способ доказательства неравенств, вспомнила уже изученные способы доказательства неравенств. Все упражнения в работе я решала сама.

 


Список использованной литературы

 

1.  Большой справочник школьника. 5 – 11 кл. М. Дрофа, 2001 г.

2.  В.В. Зайцев, В.В. Рыжков, М.И. Сканави. Элементарная математика (повторительный курс). М., Наука. 1976 г.

3.  Р.Б. Алексеев, Л.Д. Курлядчик. Нетрадиционные способы доказательства традиционных неравенств. /Математика в школе. 1991 г. №4

4.  Л. Пинтер, Й. Хегедыш. Упорядоченные наборы чисел и неравенства. /Квант. 1985 г. №12.


Информация о работе «Доказательства неравенств с помощью одномонотонных последовательностей»
Раздел: Математика
Количество знаков с пробелами: 14104
Количество таблиц: 0
Количество изображений: 4

0 комментариев


Наверх