*4. Метод половинного деления (бисекции).

*Отрезок изоляции корня можно уменьшить путём деления его пополам.

*Такой метод можно применять, если функция  непрерывна на отрезке  и на его концах принимает значения разных знаков, т.е. выполняется условие  (1).

*Разделим отрезок  пополам точкой , которая будет приближённым значением корня .

*Для уменьшения погрешности приближения корня уточняют отрезок изоляции корня. В этом случае продолжают делить отрезки, содержащие корень, пополам.

*Из отрезков  и  выбирают тот, для которого выполняется неравенство (1).

*В нашем случае это отрезок , где .

*Далее повторяем операцию деления отрезка пополам, т.е. находим  и так далее до тех пор, пока не будет достигнута заданная точность . Т.е. до тех пор, пока не перестанут изменяться сохраняемые в ответе десятичные знаки или до выполнения неравенства .

*Достоинство метода: простота (достаточно выполнения неравенства (1)).

*Недостаток метода: медленная сходимость результата к заданной точности.

*Пример. Решить уравнение  методом половинного деления с точностью до 0,001.

*Решение.*Известен отрезок изоляции корня  и заданная точность . По уравнению составим функцию .

Найдём значения функции на концах отрезка:

, .

Проверим выполнение неравенства (1): - условие выполняется, значит можно применить метод половинного деления.

Найдём середину отрезка  и вычислим значение функции в полученной точке:

, .

Среди значений   и  выберем два значения разных знаков, но близких друг к другу. Это  и . Следовательно, из отрезков  и  выбираем тот, на концах которого значения функции разных знаков. В нашем случае это отрезок  и опять находим середину отрезка и вычисляем значение функции в этой точке:

, , , - заданная точность результата не достигнута, продолжим вычисления.

, , , .

, , , .

, , , .

, , , .

, , , .

, , , .

, , , .

, , , .

,  - заданная точность результата достигнута, значит, нашли приближённое значение корня .

Ответ: корень уравнения  с точностью до 0,001.

5. Метод хорд (секущих).

Этот метод применяется при решении уравнений вида , если корень уравнения отделён, т.е.  и выполняются условия:

1) (функция  принимает значения разных знаков на концах отрезка );

2) производная  сохраняет знак на отрезке  (функция  либо возрастает, либо убывает на отрезке ).

Первое приближение корня находится по формуле: .

Для следующего приближения из отрезков  и  выбирается тот, на концах которого функция  имеет значения разных знаков.

Тогда второе приближение вычисляется по формуле:

, если  или , если .

Вычисления продолжаются до тех пор, пока не перестанут изменяться те десятичные знаки, которые нужно оставить в ответе.

6. Метод касательных (Ньютона).

Этот метод применяется, если уравнение  имеет корень , и выполняются условия:

1)  (функция принимает значения разных знаков на концах отрезка );

2) производные  и  сохраняют знак на отрезке  (т.е. функция  либо возрастает, либо убывает на отрезке , сохраняя при этом направление выпуклости).

На отрезке  выбирается такое число , при котором  имеет тот же знак, что и , т. е. выполняется условие . Таким образом, выбирается точка с абсциссой , в которой касательная к кривой  на отрезке  пересекает ось . За точку  сначала удобно выбирать один из концов отрезка.

Первое приближение корня определяется по формуле: .

Второе приближение корня определяется по формуле: .

Вычисления ведутся до совпадения десятичных знаков, которые необходимы в ответе, или при заданной точности - до выполнения неравенства .

Достоинства метода: простота, быстрота сходимости.

Недостатки метода: вычисление производной и трудность выбора начального положения.

7. Комбинированный метод хорд и касательных.

Если выполняются условия:

1) ,

2)  и  сохраняют знак на отрезке ,

то приближения корня  уравнения  по методу хорд и по методу касательных подходят к значению этого корня с противоположных сторон. Поэтому для быстроты нахождения корня удобно применять оба метода одновременно. Т.к. один метод даёт значение корня с недостатком, а другой – с избытком, то достаточно легко получить заданную степень точности корня.

Схема решения уравнения методом хорд и касательных

1.  Вычислить значения функции  и .

2.  Проверить выполнение условия . Если условие не выполняется, то неправильно выбран отрезок .

3.  Найти производные  и .

4.  Проверить постоянство знака производных на отрезке . Если нет постоянства знака, то неверно выбран отрезок .

5.  Для метода касательных выбирается за  тот из концов отрезка , в котором выполняется условие , т.е.  и  одного знака.

6.  Приближения корней находятся:

а) по методу касательных: ,

б) по методу хорд: .

7.  Вычисляется первое приближение корня: .

8.  Проверяется выполнение условия: , где - заданная точность.

Если условие не выполняется, то нужно продолжить применение метода по схеме 1-8.

В этом случае отрезок изоляции корня сужается и имеет вид . Приближённые значения корня находятся по формулам:

и .

Вычисления продолжаются до тех пор, пока не будет найдено такое значение , при котором  и  совпадут с точностью .

Пример. Решить уравнение  методом хорд и касательных с точностью 0,001, если известно, что корень уравнения .

Решение.

1.  Вычислим значения функции  на концах отрезка: , .

2.  Проверим выполнение условия:  - условие выполняется.

3.  Найдём производные:  и .

4.  На отрезке  производные  и , т.е. сохраняют знак, следовательно, условие выполняется.

5.  Выберем значение  для метода касательных. Т.к.  и , то .

6.  Найдём приближения корня:

а) по методу касательных:

б) по методу хорд: .

7.  Найдём первое приближение корня: .

8.  Проверим выполнение условия:  - условие не выполняется, значит нужно продолжить вычисления.

9.  Отрезок изоляции корня имеет вид: .

10. Продолжим уточнение корня по схеме. Для этого найдём значения функции на концах суженного отрезка:

, .

11. Проверим условие:  - выполняется, значит можно продолжить применение метода.

12. Так как  и  на отрезке, то для метода касательных: .

13. Вычислим значение производной: .

14. Найдём новые значения концов отрезка изоляции:

, .

15. Найдём второе приближение корня: .

16. Проверим выполнение условия:  - неравенство неверное, значит необходимо продолжить вычисления.

17. Отрезок изоляции корня имеет вид: .

18. Вычислим значения функции:

, .

19. Условие  - выполняется.

20. Так как  и  на , то для метода касательных .

21. Вычислим производную: .

22. Вычислим: ,

.

23. Найдём третье приближение корня: .

24. Проверим выполнение неравенства:  - условие выполняется, значит, цель достигнута.

25. Следовательно,  или  - приближённое значение корня с точностью до 0,001.

Ответ: .


Информация о работе «Приближённое решение алгебраических и трансцендентных уравнений»
Раздел: Математика
Количество знаков с пробелами: 9216
Количество таблиц: 1
Количество изображений: 1

Похожие работы

Скачать
31486
0
15

... - в методе Ньютона наблюдается ускорение сходимости процесса приближений. 5. Метод касательных (метод Ньютона) Метод касательных, связанный с именем И. Ньютона, является одним из наиболее эффективных численных методов решения уравнений. Идея метода очень проста. Возьмём производную точку x0 и запишем в ней уравнение касательной к графику функции f(x): y=f(x0)+ f ¢(x) (x-x0) (1.5) Графики ...

Скачать
20751
0
13

... «проявляется» лишь в процессе преобразований. Очевидность и «завуалированность» новой переменной мы рассмотрим на конкретных примерах во второй главе данной работы. 2. Возможности применения метода замены неизвестного при решении алгебраических уравнений В этой главе выявим возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных ...

Скачать
37732
2
12

... - функции f. Дальше, имеем: . Отсюда , где W'(x) - транспонированная матрица Якоби. Поэтому окончательно , причем . 3. Программная реализация итерационных методов Реализация алгоритмов итерационных методов решения систем нелинейных уравнений будет показана на примере системы: 3.1 Метод простых итераций Приведём систему к виду: Проверим условие ...

Скачать
22220
7
26

... 1,' Y=',Y: 8: 3); X: =X+H; until X>=Xk+H/2; readkey; end.   Блок-схема к заданию: Результаты вычислений: Задание 1 (б) Решение программы вычисления функции с условием Решение уравнения в табличном редакторе Microsoft Excel Для реализации задачи необходимо использовать логическую функцию ЕСЛИ, которая возвращает одно значение, если заданное условие при вычислении дает ...

0 комментариев


Наверх