1 этап. Определение сокращенной ДНФ.

По десятичным эквивалентам запишем 0-кубы :

Выполним разбиение на подгруппы:

.

Строим -кубы, сравнивая соседние группы (значок (*) указывает на участие данной импликанты в склеивании):

Выполняем разбиение всех -кубов в зависимости от расположения независимой переменной Х :


.

Выполняем сравнение кубов внутри каждой подгруппы с целью построения -кубов (значок (*) указывает на участие данной импликанты в склеивании):

.

Выполняем сравнение кубов внутри каждой подгруппы с целью построения -кубов (значок (*) указывает на участие данной импликанты в склеивании):

 или

.

Так как они одинаковы, то .

Запишем сокращенную ДНФ, в которую должны быть включены им-пликанта из К 3 и импликанты, не участвовавшие в склеивании (в нашем случае таких импликант нет) :


.

2 этап. Определение тупиковой ДНФ.

Так как все импликанты участвовали в склеивании, и сокращенная ДНФ состоит из одной простой импликанты, то строить таблицу покрытий нет необходимости, т.е.

.


Задание 6

Для неориентированного графа , у которого  ,

а) вычислить числа ;

б) определить хроматическое число .

Решение:

Построим граф:

а) Вычислим числа .

1) :

Используя алгоритм выделения пустых подграфов, построим дерево:

Согласно определению :


.

2) :

Используя алгоритм выделения полных подграфов, построим дерево:

Здесь - полные подграфы. Видно, что мощность носителей всех подграфов равна трем, т.е.

.

3) :


Построим модифицированную матрицу смежности  заданного графа G :

1 2 3 4 5 6

 .

Находим минимальное число строк, покрывающих все столбцы модифи-цированной матрицы . Таких строк – одна. Следовательно,

.

б) Определим хроматическое число .

Согласно алгоритму минимальной раскраски вершин графа, выделим все пустые подграфы графа G , т.е. построим дерево (оно построено в пункте а) ):


Построим таблицу:

1 2 3 4 5 6

1. {1,4,6} 1 1 1

2. {1,5} 1 1

3. {2,5} 1 1

4. {2,6} 1 1

5. {3} 1  

Определяем минимальное число строк, покрывающих все столбцы таблицы. Такими строками могут быть строки 1, 3, 5. Значит,

.

Зададимся красками: для множества вершин - краска синяя (С ), для множества вершин - краска красная ( К ), для множества вершин - краска зеленая ( З ).


Раскрасим вершины графа G :

 


Задание 7

Для заданной сети :

а) найти величину минимального пути и сам путь от вершины   до вершины  по алгоритму Дейкстры ;

б) используя алгоритм Форда-Фалкерсона, определить максимальный поток  ( v1 – вход , v6 – выход сети ) и указать минимальный разрез, отделяющий v1 от v6 ,

если задана матрица весов (длин, пропускных способностей) Р :

v1 v2 v3 v4 v5 v6

Решение:

Построим сеть:

а) Найдем величину минимального пути и сам путь сети G . Используем для этого алгоритм Дейкстры.

Этап 1. Нахождение длины кратчайшего пути.

.


Шаг 1. Полагаем

1-я итерация.

Шаг 2. Составим множество вершин, непосредственно следующих за  с временными метками: . Пересчитываем временные метки этих вершин: ,

.

Шаг 3. Одна из временных меток превращается в постоянную:

Шаг 4. Следовательно, возвращаемся на второй шаг.

2-я итерация.

Шаг 2.

 

Шаг 3.

Шаг 4.  Переход на второй шаг.

3-я итерация.


Шаг 2.

 

Шаг 3.

 

Шаг 4.

Переход на второй шаг.

4-я итерация.

Шаг 2.

Шаг 3.

Шаг 4.  Переход на второй шаг.

5-я итерация.

Шаг 2.

 


 Шаг 3.

Шаг 4.  Конец первого этапа.

Следовательно, длина кратчайшего пути равна .

Этап 2. Построение кратчайшего пути.

1-я итерация.

Шаг 5. Составим множество вершин, непосредственно предшествующих  с постоянными метками :  Проверим равенство

для этих вершин:

 т.е.

 т.е.

 

Включаем дугу  в кратчайший путь,

Шаг 6.  Возвращаемся на пятый шаг.

2-я итерация.

Шаг 5.

 


Включаем дугу  в кратчайший путь, .

Шаг 6. . Завершение второго этапа.

Следовательно, кратчайший путь построен. Его образует последовательность дуг: .

Окончательно, кратчайший путь от вершины  до вершины v6 построен. Его длина (вес) равна . Сам путь образует последовательность дуг:

 

б) Определим максимальный поток  через сеть G. Для этого используем алгоритм Форда-Фалкерсона.

Выбираем произвольно путь из вершины v1 в вершину v6 . Пусть это будет путь . Минимальную пропускную способность на этом пути, равную 10, имеет дуга , т.е.  Увеличим на этом пути поток до 10 единиц. Дуга  становится насыщенной. Дуга  имеет на данный момент пропускную способность, равную 10.

Путь  Следовательно, поток на этом пути можно увеличить на 9 единиц. Дуги  становятся насыщенными.

Других маршрутов нет (другие маршруты проходят через насыщенные дуги). Поток максимален. Делаем разрез вокруг вершины v1 по насыщенным дугам


и получаем его величину  единиц.

8. Используя алгоритм Краскала, построить остов с наименьшим весом для неориентированного взвешенного графа , у которого , если заданы веса (длины) ребер:

 

□ Построим граф G :

1. Упорядочим ребра в порядке неубывания веса (длины):

2. Возьмем ребро u1 и поместим его в строящийся остов.

Возьмем ребро u2 и поместим его в строящийся остов (т.к. оно не образует с предыдущим ребром цикла).

Берем ребро u3 и помещаем его в строящийся остов (т.к. оно не образует с предыдущими ребрами цикла).

Берем ребро u4 и помещаем его в строящийся остов (т.к. оно не образует с предыдущими ребрами цикла).

Берем ребро u5 и помещаем его в строящийся остов (т.к. оно не образует цикла с предыдущими ребрами).

Ребра  не рассматриваем, т.к. они образуют циклы с предыдущими ребрами.

Проверим окончание алгоритма. Число входящих в остов ребер равно 5. Заданный граф имеет п = 6 вершин и . Таким образом, остов содержит все вершины заданного графа G .

Вес (длина) построенного остова

равен .


Литература

1. Горбатов В.А. Основы дискретной математики. – М.: Высшая школа, 1986. – 311 с.

2. Коршунов Ю.М. Математические основы кибернетики. – М.: Энерго атомиздат, 1987. – 496 с.

3. Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера. – М.: Энергоатомиздат, 1988. – 480 с.

4. Шапорев С.Д. Дискретная математика. – СПб.: БХВ-Петербург, 2006. - 400 с.

5. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. – М.: ФИЗМАТЛИТ, 2005. – 416 с.

6. Хаханов В.И., Чумаченко С.В. Дискретная математика ( конспект теоретического материала). – Харьков: ХНУРЭ, 2003. – 246 с.

7. Богданов А.Е. Курс лекций по дискретной математике.–Северодонецк: СТИ, 2006. – 190 с.


Информация о работе «Решение практических заданий по дискретной математике»
Раздел: Математика
Количество знаков с пробелами: 14778
Количество таблиц: 4
Количество изображений: 22

Похожие работы

Скачать
179431
27
82

... подход к разработке эффективного алгоритма для решения любой задачи – изучить ее сущность. Довольно часто задачу можно сформулировать на языке теории множеств, относящейся к фундаментальным разделам математики. В этом случае алгоритм ее решения можно изложить в терминах основных операций над множествами. К таким задачам относятся и задачи информационного поиска, в которых решаются проблемы, ...

Скачать
61604
22
6

... ответ на этот вопрос положителен. Штрих Шеффера является отрицанием конъюнкции, стрелка Пирса – отрицание дизъюнкции, сумма Жегалкина – отрицание эквивалентности. М. Жегалкин (1869–1947) – российский математик и логик, один из основоположников современной математической логики. Чарльз Пирс (1839–1914) – американский логик, математик и естествоиспытатель. Основоположник семиотики, родоначальник ...

Скачать
34329
6
25

элементы теории нечетких множеств можно применять для решения экономических задач в условиях неопределённости. 1. применение Логических функций   1.1 Применение методов дискретной математики в экономике   При исследовании, анализе и решении управленческих проблем, моделировании объектов исследования и анализа широко используются методы формализированного представления, являющегося предметом ...

Скачать
44292
8
0

... Задачи, имеющие решение применимое к целому классу подобных задач: это задачи, в формулировке которых не содержится особых деталей, чтобы их решение было применимо к целому классу подобных задач (Пример: задача о метрополитене и т.д.). Задачи. Комнаты музея. Составьте алгоритм-программу определения числа комнат в музее и площади каждой комнаты в клетках. План музея показан ниже на рисунке. ...

0 комментариев


Наверх