2. Точкове оцінювання параметрів

Головними методами одержання точкових оцінок параметрів є метод моментів і метод максимальної правдоподібності.

Метод моментів. Цей метод (Пірсона) полягає в порівнюванні визначеної кількості вибіркових моментів, що співпадає з числом підлягаючих оцінці параметрів, з відповідними теоретичними моментами розподілу, що є функціями від невідомих параметрів. При розв’язанні системи рівнянь, що при цьому одержують, знаходять точкові оцінки параметрів.

Задля прикладу застосуємо метод моментів для визначення параметрів рівномірного закону розподілу випадкової величини  зі щільністю ймовірності, що задано функцією

(1)

Обчислимо математичне сподівання і дисперсію величини :

, (2)

(3)

Для визначення оцінок параметрів  і , тобто визначення  і  замінимо в рівняннях (2) і (3)  і  їхніми оцінками  і  (1),(2). Одержимо систему рівнянь для точкових оцінок , , звідки знаходимо:

.

Відомо, що метод моментів при досить загальних умовах дозволяє знайти оцінки, для яких виконується вимога асимптотичної ефективності. Однак, як доведено Фішером, отримані цим методом оцінки з погляду їхньої ефективності не є найкращими з можливих, тобто при великих вибірках вони мають не найменшу можливу дисперсію. Тому отримані цим методом оцінки слід роз­глядати лише як перше наближення.

Метод максимальної правдоподібності. Найбільш поширеним методом точкового оцінювання є метод максимальної правдоподібності (Фішера). Оцінки, отримані цим методом при досить великих вибірках, звичайно задовольняють усім перерахованим вище вимогам обґрунтованості, незміщеності та ефективності.

Сутність цього методу полягає у наступному. Нехай дана вибірка  обсягу  з генеральної сукупності з неперервно розподіленою випадковою величиною . Нехай щільність ймовірності  має вигляд , тобто містить невідомий параметр , який треба оцінити за вибіркою.

Функцією правдоподібності називають функцію параметра , що визначається формулою:

. (4)

У разі дискретної випадкової величини  з можливими значеннями  та ймовірностями  позначимо через  найбільше з можливих значень, що зустрічається у вибірці, а через  ­ абсолютні частоти, з якими з'являються значення , ,... у вибірці . У цьому випадку функцією правдоподібності називають функцію параметра , що задана співвідношенням

. (5)

Метод найбільшої правдоподібності полягає в тому, що за оцінку параметра береться таке його значення, при якому функція правдоподібності досягає свого максимуму.

Параметр  знаходять, розв’язуючи відносно нього рівняння


. (6)

Часто для зручності функцію правдоподібності заміняють її логарифмом і замість (6) розв’язують рівняння вигляду

 , . (7)

Якщо щільність ймовірності  або ймовірність можливого значення  залежать від  параметрів, то найбільш правдоподібну оцінку системи параметрів  одержують під час розв’язання системи рівнянь

(8)

або

. (9)

Найбільш правдоподібні оцінки при досить загальних умовах мають такі важливі властивості:

– вони є обґрунтованими,

– асимптотично нормально розподіленими, однак не завжди незміщеними,

– серед усіх асимптотично нормально розподілених оцінок вони мають найбільшу ефективність.

Має місце також наступне положення: якщо взагалі є ефективна оцінка, її можна отримати методом найбільшої правдоподібності.

 

3. Інтервальне оцінювання параметрів

Інтервальною називають оцінку, що визначається двома числами – кінцями інтервалу. Інтервальні оцінки дозволяють визначити точність і надійність точкових оцінок.

Надійністю (довірчою ймовірністю) оцінки невідомого параметра  за допомогою знайденої за даними вибірки статистичної характеристики  називають ймовірність , з якою виконується нерівність :

чи, що те ж саме

.

Звичайно використовують рівень надійності, що має значення: 0,95; 0,99 і 0,999.

Довірчим називають інтервал ( ), який покриває невідомий параметр із заданою надійністю .

1 Довірчі інтервали для оцінки математичного сподівання нормаль­ного розподілу при відомому . Розглянемо задачу інтервальної оцінки невідомого математичного сподівання  кількісної ознаки  по вибірковій
середній  нормально розподіленої сукупності з відомим середньо квадратич­ним відхиленням . Знайдемо довірчий інтервал, що покриває параметр  з надійністю .

Вибіркова середня  змінюється від вибірки до вибірки. Тому її можна розглядати, як випадкову величину , а вибіркові значення ознаки , , ... ,  (ці числа також змінюються від вибірки до вибірки) – як однаково розподілені незалежні випадкові величини , , ... , . Тобто, математичне сподівання кожної з цих величин дорівнює  і середнє квадратичне відхилення – .

Можна показати, що у разі нормального розподілення випадкової величина  вибіркова середня , знайдена за незалежними спостереженнями, також розподілена нормально з параметрами:

, . (12)

Поставимо вимогу, щоб було виконано співвідношення

, (13)

де  – задана надійність.

Застосуємо до нормально розподіленої випадкової величини  відому з теорії ймовірностей формулу про ймовірність відхилення нормально розподіленої випадкової величини  зі середньоквадратичним відхиленням  від його математичного сподівання  не більше ніж на

 , (14)

де  – табульована функція Лапласа (3).

При цьому у формулі (14) відповідно до (12) необхідно замінити  на ,  на , залишивши математичне чекання  без зміни.

Тоді одержимо:

, (15)

де введено таке позначення

. (16)

Підставивши у формулу (15) вираз величини  через  з (16)

, (17)

перетворивши її до вигляду:

.

З огляду на те, що ймовірність  задана і дорівнює  (13), а також, що випадкова величина  є формальним поданням вибіркової середньої , остаточно одержимо:

. (18)

Цю оцінку називають класичною. Відповідно до неї з надійністю  можна стверджувати, що довірчий інтервал  покриває невідомий параметр . При цьому величина  визначається з рівності (18), а точність оцінки  – з (17).

З формули (17) видно, що із зростанням обсягу вибірки  величина  зменшується, тобто точність оцінки підвищується. З співвідношення (18), де , із врахуванням відомого зростаючого характеру функції Лапласа  (3), випливає, що підвищення надійності класичної оцінки (18) призводить до погіршення її точності.

2 Довірчі інтервали для оцінки математичного сподівання нормального розподілу при невідомому . Ускладнимо постановку задачі, розглянутої в попередньому пункті, вважаючи, що тепер середнє квадратичне відхилення  нормально розподіленої кількісної ознаки  невідомо.

У цьому випадку за даними вибірки побудуємо випадкову величину  (її значення будемо традиційно позначати відповідною малою буквою ), що є функціональним перетворенням випадкової величини , введеної в попередньому пункті:

 . (19)

Тут збережено позначення, які введені в попередньому пункті. Крім того, вжито , що є "виправлене" середнє квадратичне відхилення (1.7).

Можна показати, що випадкова величина  (19) має розподіл Стьюдента (2.8) з  ступенями волі і щільністю розподілу:

,

Де

,


 – Гама-функція Эйлера (2.4).

Очевидно, що розподіл Стьюдента визначається параметром  – обсягом вибірки та не залежить від невідомих параметрів  і , що зумовило його практичну цінність. Оскільки функція  є парною відносно , ймовірність виконання нерівності  можна перетворити таким чином:

.

При заміні нерівності в круглих дужках на еквівалентну йому подвійну нерівність і заміні  на  так само, як у попередньому пункті, остаточно одержимо:

.

Тобто, використовуючи розподіл Стьюдента, можна знайти довірчий інтервал , що покриває невідомий параметр  із надійністю . Величина  при цьому знаходиться в таблиці розподілу Стьюдента у залежності від значень параметрів  і .

3 Довірчі інтервали для оцінки середнього квадратичного відхилення  нормального розподілу. Тепер вирішимо задачу інтервальної оцінки з надійністю  невідомого генерального середнього квадратичного відхилення  нормально розподіленої кількісної ознаки  за його "виправленим" вибірковим середньо квадратичним відхиленням s. Це означає, що має виконуватися умова:

чи, що те ж саме,

. (20)

Подвійну нерівність у виразі (20) зручно перетворити до вигляду:

  (21)

   

 , (22)

де введено позначення

(23)

і враховано, що відхилення  відносно , тобто  – мала величина в порівнянні з , так що .

Вибіркове середнє квадратичне відхилення  змінюється від вибірки до вибірки, тому його можна розглядати як випадкову величину, що ми дотримуючись традиції позначимо відповідною великою літерою . Помноживши всі члени останньої нерівності (22) на , одержимо нову нерівність

,

що після введення позначення

(24)

прийме остаточний вигляд:

. (25)

Відзначимо, що нерівності (21) і (25) еквівалентні. Тому рівність (20) можна тепер переписати так:

. (26)

Пірсон показав, що величина  (24) після її підвищення до квадрату, тобто у вигляді , підкоряється закону розподілу "хі-квадрат" (5), тому і має таке позначення. Можна показати, що щільність розподілу самої випадкової величини  має при цьому наступний вигляд:

 . (27)

Важлива особливість цього розподілу полягає в тому, що воно є інваріантним відносно оцінюваного параметра , і залежить лише від обсягу вибірки .

Відомо, що ймовірність неперервній випадковій величині  знаходитися на інтервалі ( , ) виражається у такий спосіб через щільність її розподілу:

.

Застосувавши цю формулу в нашому конкретному випадку ймовірності перебування випадкової величини  (24) із щільністю у вигляді (27) на інтервалі (25), одержимо:

. (28)

Співвідношення (28) можна розглядати як рівняння щодо невідомої величини  (23) при заданих значеннях  і . Це рівняння було розв’язано в загальному вигляді зі складанням таблиць, по яких можна знайти значення . Знаючи величину  і "виправлене" вибіркове середнє квадратичне відхилення s по формулам (21), (23) визначаємо довірчий інтервал для оцінки середнього квадратичного відхилення  нормального розподілу.


Информация о работе «Оцінювання параметрів розподілів»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 16782
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
39861
0
10

... Метод моментів Метод моментів є одним із методів точечного оцінювання параметрів розподілу. Нехай закон розподілу випадкової величини X відомий із точністю до числових значень його параметрів 1,2,…,k. Це означає, що відомий вид функції щільності fx(х, ), де = (1,2,…,k), якщо X безперервна (відомий вид функції ймовірності Р (X= х,), якщо X дискретна), але числові значення k параметрів не відомі. ...

Скачать
14685
0
2

... (особливо в задачах оцінювання параметрів) за критерій якості приймають саму функцію правдоподібності. Розглянуті показники якості рішення використовують для формулювання критеріїв оптимальності рішень при розв’язанні задач обробки сигналів. 3. Критерії оптимальності рішень у задачі перевірки гіпотез Розглянемо критерії оптимальності рішень при вирішенні задач перевірки гіпотез. Байєсі ...

Скачать
18839
13
1

... інтервалу [1,36; 2,64], то можна говорити про відсутність автокореляції. Подальше проведення розрахунків за критерієм фон-Неймана та застосування методу Ейткена є недоцільним. ЗАДАЧА 4 ОЦІНКА ПАРАМЕТРІВ СИСТЕМИ ЕКОНОМЕТРИЧНИХ РІВНЯНЬ Оцінити параметри економетричної моделі, що складається з двох рівнянь: (4.1) Перше рівняння відображає залежність грошового обігу  від оборотності грошей ...

Скачать
18248
0
0

... необхідності допускається застосування байєсівських процедур. Байєсівський підхід стає все більш популярним в області фармакокінетики. Можна сказати, що клінічні дослідження мають ще тривалішу історію, ніж математична статистика. Клінічні дослідження в тому розумінні, що ми звикли вкладати в це поняття, в основному одержали розвиток після другої світової війни, хоча відомі і більш ранні приклади. ...

0 комментариев


Наверх