Оцінки істинного значення величини, що вимірюється, і точності вимірів. Ця задача подає великий практичний інтерес для метрології

16782
знака
0
таблиц
3
изображения

4 Оцінки істинного значення величини, що вимірюється, і точності вимірів. Ця задача подає великий практичний інтерес для метрології.

Нехай проведено  незалежних однаково точних вимірів деякої фізичної величини, істинне значення  якої невідомо. До того ж невідомо також і середнє квадратичне відхилення  випадкових похибок вимірювання. Результати окремих вимірів , , ... ,  можна розглядати, як випадкові величини , , ... , , що є незалежні (виміри незалежні), мають те ж саме математичне сподівання  (істинне значення величини, що вимірюється), однакові дисперсії  (виміри однаково точні) і нормально розподілені (таке допущення підтверджується досвідом).

Отже, усі припущення, що було зроблено під час отримання довірчих інтервалів у пунктах 1 і 2, виконуються. Тому можна безпосередньо використати отримані в них формули. Іншими словами, істинне значення величини, що вимірюється, можна оцінювати по середньому арифметичному результатів окремих вимірів за допомогою довірчих інтервалів.

Середнє квадратичне відхилення  випадкових похибок вимірів у теорії помилок характеризує точність вимірів (точність приладу).

Для оцінки  використовують "виправлене" середнє квадратичне відхилення . Оскільки звичайно результати вимірів взаємно незалежні, мають одне й теж саме математичне сподівання (істинне значення величини, що вимірюється) і однакову дисперсію (у випадку однаково точних вимірів), то теорію, викладену в пункті 3, можна застосувати і для оцінки точності вимірів.

5 Інтервальна оцінка ймовірності біноміального розподілу. У підрозділі 2 у якості приклада 1 було вирішено задачу точкової оцінки ймовірності біноміального розподілу. Як точкову оцінку невідомої ймовірності  було узято відносну частоту  появи події ( – число появ події,  – число випробувань). Було отримано математичне сподівання і дисперсію оцінки.

Тепер буде знайдено довірчий інтервал для оцінки ймовірності за відносною частотою.

Для спрощення припустимо, що кількість іспитів  досить велика, а ймовірність  не є близькою ні до одиниці, ні до нуля (досить, щоб обидві величини  і  були більше чотирьох). Тоді можна вважати, що частота події  є випадковою величиною , розподіл якої є наближеним до нормального закону (у сенсі функції розподілу). Параметрами цього закону будуть  і .

Тому до випадкової величини  можна застосувати відому формулу про ймовірність відхилення нормально розподіленої випадкової величини  зі середньо квадратичним відхиленням  від її математичного сподівання  не більше ніж на

 , (29)

де  – табульована функція Лапласа.

Зажадавши, щоб умова для ймовірності у формулі (29) виконувалося з надійністю , і, замінивши в ній  на ,  на ,  на , а також увівши позначення  , одержимо

або інакше

.

При практичному застосуванні цієї формули випадкову величину  необхідно замінити невипадковою відносною частотою , що спостерігається, і підставити :

.

Під час розв’язання цієї нерівності щодо невідомої ймовірності  у припущенні  підвищимо до квадрата обидві її частини. При цьому одержимо еквівалентну квадратну нерівність відносно :

.

Її коефіцієнт при старшому члені та дискримінант позитивні, тому її корені  і  дійсні, причому не дорівнюють один одному. Отже ця нерівність має розв’язання:

,

дисперсія крива розподіл сподівання

що і визначає довірчий інтервал, який слід знайти.

Аналогічний розв’язок нерівності отримуємо і у разі .


Информация о работе «Оцінювання параметрів розподілів»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 16782
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
39861
0
10

... Метод моментів Метод моментів є одним із методів точечного оцінювання параметрів розподілу. Нехай закон розподілу випадкової величини X відомий із точністю до числових значень його параметрів 1,2,…,k. Це означає, що відомий вид функції щільності fx(х, ), де = (1,2,…,k), якщо X безперервна (відомий вид функції ймовірності Р (X= х,), якщо X дискретна), але числові значення k параметрів не відомі. ...

Скачать
14685
0
2

... (особливо в задачах оцінювання параметрів) за критерій якості приймають саму функцію правдоподібності. Розглянуті показники якості рішення використовують для формулювання критеріїв оптимальності рішень при розв’язанні задач обробки сигналів. 3. Критерії оптимальності рішень у задачі перевірки гіпотез Розглянемо критерії оптимальності рішень при вирішенні задач перевірки гіпотез. Байєсі ...

Скачать
18839
13
1

... інтервалу [1,36; 2,64], то можна говорити про відсутність автокореляції. Подальше проведення розрахунків за критерієм фон-Неймана та застосування методу Ейткена є недоцільним. ЗАДАЧА 4 ОЦІНКА ПАРАМЕТРІВ СИСТЕМИ ЕКОНОМЕТРИЧНИХ РІВНЯНЬ Оцінити параметри економетричної моделі, що складається з двох рівнянь: (4.1) Перше рівняння відображає залежність грошового обігу  від оборотності грошей ...

Скачать
18248
0
0

... необхідності допускається застосування байєсівських процедур. Байєсівський підхід стає все більш популярним в області фармакокінетики. Можна сказати, що клінічні дослідження мають ще тривалішу історію, ніж математична статистика. Клінічні дослідження в тому розумінні, що ми звикли вкладати в це поняття, в основному одержали розвиток після другої світової війни, хоча відомі і більш ранні приклади. ...

0 комментариев


Наверх