5. Определяем значение нулей ( корней ) исходного уравнения
5.1 3x2 + 2bx + c = - (2mn)11( 2mn)21
-→ 3x2 - 2∙(6.85)∙ x + 13.425 = (2.5)∙(2.65) -> 3x2 – 13.7x + 6.8 = 0.
-→ X1 = 4 – это один из корней исходного уравнения!
6. Таким образом, определен один из корней исходного кубического уравнения X1 = 4, и
кроме того, известны значения (2mn)11 ÷ (2mn)32. Этих данных достаточно для
определения двух остальных корней.
6.1 Пусть (2mn)11 = 2.5 = (X1 - X2) -→ X2 = X1 – 2.5 = 4 – 2.5 = 1.5 . Это второй корень!
6.2 Пусть (2mn)12 = - 2.5 = (X1 - X2) -→ X2 = X1 +2.5 = 4 + 2.5 = 6.5. Это не корень.
6.3 Пусть (2mn)21 = 2.65 = (X1 - X3) -→ X3 = X1 – 2.65= 4 – 2.65 = 1.35. Это третий корень!
Решением исходного уравнения будет X1 = 4, X2 = 1.5, X3 = 1.35.
Расчет закончен !
Неприводимый случай формулы Кардана
Если для кубического уравнения имеет место случай одного действительного и двух мнимых сопряженных корней, то такой вариант называют неприводимым случаем формулы Кардана.
Рассмотрим неприводимый случай формулы Кардана с позиций системы mn параметров.
Задача "Задано кубическое уравнение вида ax3 + bx2+ cx + d = 0. Известно, что нули этого уравнения имеют один действительный и два мнимых сопряженных корня . Используя формулы системы mn параметров предложить метод определения нулей исходного уравнения ".
Пусть а = 1.
Решение
Ранее было показано, что для любого кубического уравнения имеют место формулы
D1 = - (2mn)12( 2mn)22( 2mn)32
D2 = - [(2mn)12 + ( 2mn)22 + ( 2mn)32],
где
- (2mn)j - разность любой пары корней исходного уравнения
- D1 = -
- D2 = - 2( 3c – b2 )
- ( b,c,d) – коэффициенты исходного уравнения.
По условиям задачи имеем один действительный корень ( обозначим его X1 = g1) и два сопряженных мнимых корня X2 = ( g2 - hi), X3 = ( g2 + hi). Тогда
(2mn)1 = ( X1 - X2 ) = (g1 - g2 ) + hi
(2mn)2 = ( X1 - X3 ) = (g1 - g2 ) – hi
(2mn)3 = ( X2 - X3 ) = g2 - hi - g2 – hi = - 2hi
-→ D1 = - ( 2mn)12 ∙ ( 2mn)22 ∙ ( 2mn)32 = - [(g1 - g2 ) + hi]2 ∙ [(g1 - g2 ) - hi]2 ∙ [2 hi]2
-→ D1 = [(g1 - g2 )2 + h2 ]2 ∙ 4h2
Обратим внимание на то, что в этой формуле в квадратных скобках имеют место
- знак “ + “
- только действительные числа.
Таким образом, метод решения поставленной задачи заключается в следующем
1. На основании значений коэффициентов исходного уравнения по формулам
D1 = -
D2 = - 2( 3c - b2 )
определяются значения D1 и D2.
2. Определяются D1 - как произведение двух квадратов
D2 - как удвоенная сумма двух квадратов.
3. Определяются значения g1, g2,h.
4. Определяются значения (2mn)11, (2mn)21, (2mn)31
5. Определяются значения корней исходного уравнения.
Пример 5 Решить уравнение с помощью формул системы mn параметров
x3 - 9x2 + 73x – 265 = 0
где a =1, b = - 9, c = 73, d = - 265
В этом уравнении имеет место неприводимый случай формулы Кардана.
Решение
1. Определяем значение D1 = -
-→D1 = - [4(219 – 81)3+(- 1458 + 5913 – 7155)2]/27 = - [ 10512288 + 7290000]/27= - 659344
2. Для дальнейших расчетов общий знак “ - “ не имеет значения, поэтому будем рассматривать D1 как положительную величину.
-→D1 = [(g1 - g2 )2 + h2 ]2 ∙ 4h2 = 659344 = 2∙2∙2∙2∙7∙7∙29∙29 = 4∙2∙2∙7∙7∙29∙29= 4∙72 ∙ 582
Здесь число 659344 представлено в виде всех сомножителей с целью наглядности формирования множителей в соответствии с формулой [(g1 - g2 )2 + h2 ]2 ∙ 4h2 . Тогда можно записать
h = 7, (g1 - g2 )2 + h2 = 58 -→ (g1 - g2 )2 = 58 – 49 = 9 -→( g1 - g2 ) = ± 3
3. Для определения g1 и g2 воспользуемся свойством корней исходного уравнения
- b = X1+X2+X3 -→ - ( - 9) = g1 + g2 + hi + g2 – hi = g1 + 2 g2 -→ 9 = g1 + 2g2.
4. Теперь, имея два уравнения ( g1 - g2 )= ± 3 и (g1 + 2 g2) = 9, можно определить значения g1 и g2
Пусть ( g1 - g2 )= 3 -→ g2 = g1 – 3 -→ g1 + 2(g1 – 3) = 9 -→ 3g1 = 15 -→ g1 = 5 -→ g2 = 2.
-→ X1 = 5, X2 = 2 + 7i , X3 = 2 – 7i
Расчет закончен !
Пример 6 Решить уравнение с помощью формул системы mn параметров
x3 - 30x2 + 322x – 1168 = 0
где a =1, b = - 30, c = 322, d = - 1168
В этом уравнении имеет место неприводимый случай формулы Кардана.
Решение
1. Определяем значение D1 = -
-→D1 = - [4(966 – 900)3+(- 54000 + 86940 – 31536)2]/27 = - [ 1149984 + 1971216]/27= - 115600
2. Для дальнейших расчетов общий знак “ - “ не имеет значения, поэтому будем рассматривать D1 как положительную величину.
-→D1 = [(g1 - g2 )2 + h2 ]2 ∙ 4h2 = 115600 = 2∙2∙2∙2∙5∙5∙17∙17 = 4∙2∙2∙5∙5∙17∙17= 4∙ 52 ∙342
Здесь число 115600 представлено в виде всех сомножителей с целью наглядности формирования множителей в соответствии с формулой [(g1 - g2 )2 + h2 ]2 ∙ 4h2 . Тогда можно записать
h = 5, (g1 - g2 )2 + h2 = 34 -→ (g1 - g2 )2 = 34 – 25 = 9 -→( g1 - g2 ) = ± 3
3. Для определения g1 и g2 воспользуемся свойством корней исходного уравнения
- b = X1+X2+X3 -→ - ( - 30) = g1 + g2 + hi + g2 – hi = g1 + 2 g2 -→ 30 = g1 + 2g2.
4.Теперь, имея два уравнения ( g1 - g2 )= ± 3 и (g1 + 2 g2) = 30, можно определить значения g1 и g2
Пусть ( g1 - g2 )= - 3 -→ g2 = g1 – 3 -→ g1 + 2(g1 – 3) = 30 -→ 3g1 = 24 -→ g1 = 8 -→ g2 = 11.
-→ X1 = 8, X2 = 11 + 5i , X3 = 2 – 5i
Расчет закончен !
Новый метод решения кубических уравнений
Из анализа результатов вышеприведенных примеров можно предложить новый метод решения кубических уравнений..Для корней кубического уравнения могут
иметь место следующие случаи
- три корня имеют одинаковые действительные значения
- три корня имеют действительные значения, при этом два из них являются сопряженными, т.е. если X1 = g + h, то X2 = g – h или X1 = (g + h), то X2 = (g – h), Наличие множителя обусловлено численным значением коэффициента b при X для X3 + bX2 + cX + d = ( X – X1)∙( X2 + bX + c) = 0.
- один корень имеет действительное значение, два других- комплексные и сопряженные, т.е. если X1 = g + ih, то X2 = g – ih.
Первый случай – тривиальный . (x – a )3 = x3 – 3ax2+3a2x – a3= 0. Определение корней для остальных случаев является непростой задачей.
Три разных действительных корня
Пусть имеем один действительный корень ( обозначим его X1 = g1) и два сопряженных действительных корня. Если исходное уравнение разделить на разность ( X – g1 ), то получим квадратное уравнение вида
[ X – (g2 + h)]∙[ X – (g2 - h)] = 0
-→ X2 – 2g2X + (g22 – h2) = 0
-→ X1 = g1, X2,3 = g2 ± h -→ X2 = ( g2 - h), X3 = ( g2 + h)
-→ (2mn)1 = ( X1 - X2 ) = (g1 - g2 ) + h
(2mn)2 = ( X1 - X3 ) = (g1 - g2 ) – h
(2mn)3 = ( X2 - X3 ) = g2 - h - g2 – h = - 2h
-→ D1 = - ( 2mn)12 ∙ ( 2mn)22 ∙ ( 2mn)32 = - [(g1 - g2 ) + h]2 ∙ [(g1 - g2 ) - h]2 ∙ [2h]2
-→ D1 = [(g1 - g2 )2 - h2 ]2 ∙ 4h2 (3)
-→ D2 = - [ (2mn)12 + (2mn)22 + (2mn)32 ] = - [(g1 - g2 ) + h]2 + [(g1 - g2 ) - h]2 + 4h2
→ D2 = - [(g1 - g2 )2 + 2(g1 - g2 )∙ h + h2 + (g1 - g2 )2 - 2(g1 - g2 )∙ h + h2 + 4h2]
→ D2 = - [ 2(g1 - g2 )2 + 6h2] = - 2[(g1 - g2 )2 +3h2] (8)
На основании формул системы mn параметров имеем
D1 = - (4)
D2 = - 2( 3c - b2 ), (5)
где b,c,d- коэффициенты исходного кубического уравнения.
Три действительных корня и два одинаковых
Пусть имеем один действительный корень ( обозначим его X1 = g1) и два равных действительных корня. Тогда имеем h =0 и (2mn)I = 0
При (2mn)I = 0 на основании уравнения (1) будем иметь
3x2 + 2bx +с = 0 (6)
→ X2 = ( g2 - h), X3 = ( g2 + h) → X2 = X3 = g2
→ (2mn)1 = ( X1 - X2 ) = (g1 - g2 )
(2mn)2 = ( X1 - X3 ) = (g1 - g2 )
(2mn)3 = ( X2 - X3 ) = g2 - g2 = 0
→ D1 = - ( 2mn)12 ∙ ( 2mn)22 ∙ ( 2mn)32 = 0
→ D2 = - [ (2mn)12 + (2mn)22 + (2mn)32 ] = - [ (2mn)12 + (2mn)22 ]
→ D2 = 2 (2mn)12 = 2 (g1 - g2 )2 = - 2( 3c – b2 ) = 2( b2 – 3c )
→ (g1 - g2 )2 = ( b2 - 3c )
На основании свойств корней исходного уравнения можно записать - b = X1 + 2X2
→ g1 + 2g2 = - b
Решая систему из двух уравнений будем иметь g2 = -
→ X11,12 = g11,12 = [ - b ± ]
→ X21,22 = g21,22 = [ - b ± ]
Расчет закончен !
Пример 7 Решить уравнение с помощью формул системы mn параметров
x3 - 41x2 + 475x – 1083 = 0
где a =1, b = - 41, c = 475, d = - 1083
1. X11,12 = g11,12 = [ - b ± ] → X11,12 = [ 41 ± ] = [ 41 ± ]
→ X11 = , X1 = 3
X21,22 = g21,22 = [ - b ± ] → g21,22 = [ 41 ± ]= [ 41 ± ]
→ X21 = 19, X22 = → X2 = X3 = 19
Расчет закончен !
Вывод основных формул
Задано исходное уравнение x3 + bx2+ cx + d = 0 . Необходимо найти значения корней.
1. Определяем значение D1 = -
2. Разделим
3. Представляем число в виде произведения двух квадратов = [(g1 - g2 )2 - h2 ]2 ∙ h2.
4. Меньший множитель принимаем за h2→ [(g1 - g2 )2 - h2 ]2 =
→ (g1 - g2 ) = (6)
... в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, • в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений. . Как составлял и решал Диофант квадратные уравнения , В “Арифметике” Диофанта нет систематического изложения алгебры, однако в ней содержится ...
... решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с ...
... «проявляется» лишь в процессе преобразований. Очевидность и «завуалированность» новой переменной мы рассмотрим на конкретных примерах во второй главе данной работы. 2. Возможности применения метода замены неизвестного при решении алгебраических уравнений В этой главе выявим возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных ...
... рассмотреть лишь два варианта: , и . Подставляя эти пары значений в остальные уравнения, убеждаемся, что первая из них дает искомое разложение: . Этот способ решения называется методом неопределенных коэффициентов. Если уравнение имеет вид , где и - многочлены, то замена сводит его решение к решению двух уравнений меньших степеней: и . Возвратные уравнения Возвратным алгебраическим ...
0 комментариев