5. Определяем значение нулей ( корней ) исходного уравнения

5.1 3x2 + 2bx + c = - (2mn)11( 2mn)21

-→ 3x2 - 2∙(6.85)∙ x + 13.425 = (2.5)∙(2.65) -> 3x2 – 13.7x + 6.8 = 0.

-→ X1 = 4 – это один из корней исходного уравнения!

 

6. Таким образом, определен один из корней исходного кубического уравнения X1 = 4, и

кроме того, известны значения (2mn)11 ÷ (2mn)32. Этих данных достаточно для

определения двух остальных корней.

6.1 Пусть (2mn)11 = 2.5 = (X1 - X2) -→ X2 = X1 – 2.5 = 4 – 2.5 = 1.5 . Это второй корень!

6.2 Пусть (2mn)12 = - 2.5 = (X1 - X2) -→ X2 = X1 +2.5 = 4 + 2.5 = 6.5. Это не корень.

6.3 Пусть (2mn)21 = 2.65 = (X1 - X3) -→ X3 = X1 – 2.65= 4 – 2.65 = 1.35. Это третий корень!

Решением исходного уравнения будет X1 = 4, X2 = 1.5, X3 = 1.35.

Расчет закончен !

Неприводимый случай формулы Кардана

 

Если для кубического уравнения имеет место случай одного действительного и двух мнимых сопряженных корней, то такой вариант называют неприводимым случаем формулы Кардана.

Рассмотрим неприводимый случай формулы Кардана с позиций системы mn параметров.

Задача "Задано кубическое уравнение вида ax3 + bx2+ cx + d = 0. Известно, что нули этого уравнения имеют один действительный и два мнимых сопряженных корня . Используя формулы системы mn параметров предложить метод определения нулей исходного уравнения ".

Пусть а = 1.

 

Решение

Ранее было показано, что для любого кубического уравнения имеют место формулы

D1 = - (2mn)12( 2mn)22( 2mn)32

D2 = - [(2mn)12 + ( 2mn)22 + ( 2mn)32],

где

- (2mn)j - разность любой пары корней исходного уравнения

- D1 = -

- D2 = - 2( 3c – b2 )

- ( b,c,d) – коэффициенты исходного уравнения.

По условиям задачи имеем один действительный корень ( обозначим его X1 = g1) и два сопряженных мнимых корня X2 = ( g2 - hi), X3 = ( g2 + hi). Тогда

(2mn)1 = ( X1 - X2 ) = (g1 - g2 ) + hi

(2mn)2 = ( X1 - X3 ) = (g1 - g2 ) – hi

(2mn)3 = ( X2 - X3 ) = g2 - hi - g2 – hi = - 2hi

-→ D1 = - ( 2mn)12 ∙ ( 2mn)22 ∙ ( 2mn)32 = - [(g1 - g2 ) + hi]2 ∙ [(g1 - g2 ) - hi]2 ∙ [2 hi]2

-→ D1 = [(g1 - g2 )2 + h2 ]2 ∙ 4h2

Обратим внимание на то, что в этой формуле в квадратных скобках имеют место

- знак “ + “

- только действительные числа.

Таким образом, метод решения поставленной задачи заключается в следующем

 

1. На основании значений коэффициентов исходного уравнения по формулам

 

D1 = -

D2 = - 2( 3c - b2 )

определяются значения D1 и D2.

 

2. Определяются D1 - как произведение двух квадратов

D2 - как удвоенная сумма двух квадратов.

 

3. Определяются значения g1, g2,h.


 

4. Определяются значения (2mn)11, (2mn)21, (2mn)31

 

5. Определяются значения корней исходного уравнения.

Пример 5 Решить уравнение с помощью формул системы mn параметров

x3 - 9x2 + 73x – 265 = 0

 

где a =1, b = - 9, c = 73, d = - 265

В этом уравнении имеет место неприводимый случай формулы Кардана.

 

Решение

1. Определяем значение D1 = -

-→D1 = - [4(219 – 81)3+(- 1458 + 5913 – 7155)2]/27 = - [ 10512288 + 7290000]/27= - 659344

 

2. Для дальнейших расчетов общий знак “ - “ не имеет значения, поэтому будем рассматривать D1 как положительную величину.

-→D1 = [(g1 - g2 )2 + h2 ]2 ∙ 4h2 = 659344 = 2∙2∙2∙2∙7∙7∙29∙29 = 4∙2∙2∙7∙7∙29∙29= 4∙72 ∙ 582

Здесь число 659344 представлено в виде всех сомножителей с целью наглядности формирования множителей в соответствии с формулой [(g1 - g2 )2 + h2 ]2 ∙ 4h2 . Тогда можно записать

h = 7, (g1 - g2 )2 + h2 = 58 -→ (g1 - g2 )2 = 58 – 49 = 9 -→( g1 - g2 ) = ± 3

 

3. Для определения g1 и g2 воспользуемся свойством корней исходного уравнения

- b = X1+X2+X3 -→ - ( - 9) = g1 + g2 + hi + g2 – hi = g1 + 2 g2 -→ 9 = g1 + 2g2.

 

4. Теперь, имея два уравнения ( g1 - g2 )= ± 3 и (g1 + 2 g2) = 9, можно определить значения g1 и g2

Пусть ( g1 - g2 )= 3 -→ g2 = g1 – 3 -→ g1 + 2(g1 – 3) = 9 -→ 3g1 = 15 -→ g1 = 5 -→ g2 = 2.

-→ X1 = 5, X2 = 2 + 7i , X3 = 2 – 7i

Расчет закончен !

 

Пример 6 Решить уравнение с помощью формул системы mn параметров

x3 - 30x2 + 322x – 1168 = 0

где a =1, b = - 30, c = 322, d = - 1168

В этом уравнении имеет место неприводимый случай формулы Кардана.

 

Решение

1. Определяем значение D1 = -

-→D1 = - [4(966 – 900)3+(- 54000 + 86940 – 31536)2]/27 = - [ 1149984 + 1971216]/27= - 115600

2. Для дальнейших расчетов общий знак “ - “ не имеет значения, поэтому будем рассматривать D1 как положительную величину.

-→D1 = [(g1 - g2 )2 + h2 ]2 ∙ 4h2 = 115600 = 2∙2∙2∙2∙5∙5∙17∙17 = 4∙2∙2∙5∙5∙17∙17= 4∙ 52 ∙342

Здесь число 115600 представлено в виде всех сомножителей с целью наглядности формирования множителей в соответствии с формулой [(g1 - g2 )2 + h2 ]2 ∙ 4h2 . Тогда можно записать

h = 5, (g1 - g2 )2 + h2 = 34 -→ (g1 - g2 )2 = 34 – 25 = 9 -→( g1 - g2 ) = ± 3

3. Для определения g1 и g2 воспользуемся свойством корней исходного уравнения

- b = X1+X2+X3 -→ - ( - 30) = g1 + g2 + hi + g2 – hi = g1 + 2 g2 -→ 30 = g1 + 2g2.

4.Теперь, имея два уравнения ( g1 - g2 )= ± 3 и (g1 + 2 g2) = 30, можно определить значения g1 и g2

Пусть ( g1 - g2 )= - 3 -→ g2 = g1 – 3 -→ g1 + 2(g1 – 3) = 30 -→ 3g1 = 24 -→ g1 = 8 -→ g2 = 11.

-→ X1 = 8, X2 = 11 + 5i , X3 = 2 – 5i

Расчет закончен !

 

Новый метод решения кубических уравнений

Из анализа результатов вышеприведенных примеров можно предложить новый метод решения кубических уравнений..Для корней кубического уравнения могут

иметь место следующие случаи

- три корня имеют одинаковые действительные значения

- три корня имеют действительные значения, при этом два из них являются сопряженными, т.е. если X1 = g + h, то X2 = g – h или X1 = (g + h), то X2 = (g – h), Наличие множителя  обусловлено численным значением коэффициента b при X для X3 + bX2 + cX + d = ( X – X1)∙( X2 + bX + c) = 0.

- один корень имеет действительное значение, два других- комплексные и сопряженные, т.е. если X1 = g + ih, то X2 = g – ih.

Первый случай – тривиальный . (x – a )3 = x3 – 3ax2+3a2x – a3= 0. Определение корней для остальных случаев является непростой задачей.


Три разных действительных корня

Пусть имеем один действительный корень ( обозначим его X1 = g1) и два сопряженных действительных корня. Если исходное уравнение разделить на разность ( X – g1 ), то получим квадратное уравнение вида

[ X – (g2 + h)]∙[ X – (g2 - h)] = 0

-→ X2 – 2g2X + (g22 – h2) = 0

-→ X1 = g1, X2,3 = g2 ± h -→ X2 = ( g2 - h), X3 = ( g2 + h)

-→ (2mn)1 = ( X1 - X2 ) = (g1 - g2 ) + h

(2mn)2 = ( X1 - X3 ) = (g1 - g2 ) – h

(2mn)3 = ( X2 - X3 ) = g2 - h - g2 – h = - 2h

-→ D1 = - ( 2mn)12 ∙ ( 2mn)22 ∙ ( 2mn)32 = - [(g1 - g2 ) + h]2 ∙ [(g1 - g2 ) - h]2 ∙ [2h]2

-→ D1 = [(g1 - g2 )2 - h2 ]2 ∙ 4h2 (3)

-→ D2 = - [ (2mn)12 + (2mn)22 + (2mn)32 ] = - [(g1 - g2 ) + h]2 + [(g1 - g2 ) - h]2 + 4h2

→ D2 = - [(g1 - g2 )2 + 2(g1 - g2 )∙ h + h2 + (g1 - g2 )2 - 2(g1 - g2 )∙ h + h2 + 4h2]

→ D2 = - [ 2(g1 - g2 )2 + 6h2] = - 2[(g1 - g2 )2 +3h2] (8)

На основании формул системы mn параметров имеем

D1 = -  (4)

D2 = - 2( 3c - b2 ), (5)

 

где b,c,d- коэффициенты исходного кубического уравнения.

Три действительных корня и два одинаковых

Пусть имеем один действительный корень ( обозначим его X1 = g1) и два равных действительных корня. Тогда имеем h =0 и (2mn)I = 0

При (2mn)I = 0 на основании уравнения (1) будем иметь

3x2 + 2bx +с = 0 (6)

→ X2 = ( g2 - h), X3 = ( g2 + h) → X2 = X3 = g2

→ (2mn)1 = ( X1 - X2 ) = (g1 - g2 )

(2mn)2 = ( X1 - X3 ) = (g1 - g2 )

(2mn)3 = ( X2 - X3 ) = g2 - g2 = 0

→ D1 = - ( 2mn)12 ∙ ( 2mn)22 ∙ ( 2mn)32 = 0

→ D2 = - [ (2mn)12 + (2mn)22 + (2mn)32 ] = - [ (2mn)12 + (2mn)22 ]

→ D2 = 2 (2mn)12 = 2 (g1 - g2 )2 = - 2( 3c – b2 ) = 2( b2 – 3c )

→ (g1 - g2 )2 = ( b2 - 3c )

На основании свойств корней исходного уравнения можно записать - b = X1 + 2X2

→ g1 + 2g2 = - b

Решая систему из двух уравнений будем иметь g2 = -

→ X11,12 = g11,12 = [ - b ±  ]

→ X21,22 = g21,22 = [ - b ±  ]

Расчет закончен !

Пример 7 Решить уравнение с помощью формул системы mn параметров

x3 - 41x2 + 475x – 1083 = 0

где a =1, b = - 41, c = 475, d = - 1083

1. X11,12 = g11,12 = [ - b ±  ] → X11,12 = [ 41 ±  ] = [ 41 ±  ]

→ X11 =  , X1 = 3

X21,22 = g21,22 = [ - b ±  ] → g21,22 = [ 41 ±  ]= [ 41 ±  ]

→ X21 = 19, X22 =  → X2 = X3 = 19

Расчет закончен !

Вывод основных формул

Задано исходное уравнение x3 + bx2+ cx + d = 0 . Необходимо найти значения корней.

 

1. Определяем значение D1 = -

 

2. Разделим

 

3. Представляем число  в виде произведения двух квадратов  = [(g1 - g2 )2 - h2 ]2 ∙ h2.

 

4. Меньший множитель принимаем за h2→ [(g1 - g2 )2 - h2 ]2 =

→ (g1 - g2 ) =  (6)

 


Информация о работе «Новый метод решения кубического уравнения»
Раздел: Математика
Количество знаков с пробелами: 26979
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
19779
0
7

... в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, • в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений. . Как составлял и решал Диофант квадратные уравнения , В “Арифметике” Диофанта нет систематического изложения алгебры, однако в ней содержится ...

Скачать
43593
0
0

... решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с ...

Скачать
20751
0
13

... «проявляется» лишь в процессе преобразований. Очевидность и «завуалированность» новой переменной мы рассмотрим на конкретных примерах во второй главе данной работы. 2. Возможности применения метода замены неизвестного при решении алгебраических уравнений В этой главе выявим возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных ...

Скачать
38988
0
1

... рассмотреть лишь два варианта: ,  и . Подставляя эти пары значений в остальные уравнения, убеждаемся, что первая из них дает искомое разложение: . Этот способ решения называется методом неопределенных коэффициентов. Если уравнение имеет вид , где  и  - многочлены, то замена  сводит его решение к решению двух уравнений меньших степеней:  и . Возвратные уравнения Возвратным алгебраическим ...

0 комментариев


Наверх